Skip to main content
Log in

Smeared and discrete representations of localized fracture

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The possibilities of smeared and discrete crack concepts for simulating localized fracture in softening materials are investigated. First, comparisons are made between fixed, multi-directional and rotating smeared cracks, whereby the crack orientation is kept constant, updated in a stepwise manner or updated continuously, respectively. Next, the smeared approaches are compared to analyses on systems of predefined potential discrete cracks. Results indicate that (1) fixed smeared cracks may produce overstiff behavior while rotating smeared cracks do not, (2) smeared cracks may give rise to stress-locking while discrete cracks do not. Examples are shown for concrete and masonry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Balakrishnan and D.W. Murra, IABSE Reports 54, Colloquium on Computation Mechanics of Reinforced Concrete, Delft University (1978) 393–404.

  2. K. William, E. Pramono and S. Sture, in Fracture of Concrete and Rock, S.P. Shah and S.E. Swartz (eds.), SEM, Bethel (1987) 192–207.

    Google Scholar 

  3. F. Barzegar, ASCE Journal of Structural Engineering 115 (3) (1989) 647–665.

    Google Scholar 

  4. M.A. Crisfield and J. Wills, ASCR Journal of Engineering Mechanics 115 (3) (1989) 578–597.

    Google Scholar 

  5. D. Ngo and A.C. Scordelis, Journal of the American Concrete Institute 64 (14) (1967) 152–163.

    Google Scholar 

  6. R.E. Goodman, R.L. Taylor and T.L. Brekke, ASCE Journal of Solid Mechanics and Foundation Division 94 (3) (1968) 637–659.

    Google Scholar 

  7. J.G. Rots, Computational Modeling of Concrete Fracture, Dissertation, Delft University of Technology, Faculty of Civil Engineering (1988).

  8. J.-M. Hohberg and H. Bachmann, in Numerical Methods in Geomechanics, G. Swoboda (ed.), Balkema Rotterdam (1988) 829–834.

    Google Scholar 

  9. R. de Borst and P. Nauta, Engineering Computations 2 (1985) 35–46.

    Google Scholar 

  10. J.G. Rots, P. Bauta, G.M.A. Kusters and J. Blaauwendraad, HERON 30 (1) (1985) 1–48.

    Google Scholar 

  11. Z.P. Bazant, ASCE Journal of Engineering Mechanics 109 (3) (1983) 849–865.

    Google Scholar 

  12. A.K. Gupta and H. Akbar, ASCE Journal of Structural Engineering 110 (8) (1984) 1735–1746.

    Google Scholar 

  13. A. Hillerbordg, M. Modeer and P.E. Petersson, Cement and Concrete Research 6 (6) (1976) 773–782.

    Article  Google Scholar 

  14. Z.P. Bazant and B.H. Oh, RILEM Materials and Structures 16 (93) (1983) 155–177.

    Google Scholar 

  15. H.W. Reinhardt, H.A.W. Cornelissen and D.A. Hordijk, ASCE Journal of Structural Engineering 112 (11) (1986) 2462–2477.

    Google Scholar 

  16. J.G. Rots and R. de Borst, International Journal of Solids and Structures, accepted for publication.

  17. M. Arrea and A.R. Ingraffea, Report 81–13, Department of Structural Engineering, Cornell University, Ithaca, New York (1982).

    Google Scholar 

  18. A.S. Kobayashi, M.N. Hawkins, D.B. Barker and B.M. Liaw, in Application of Fracture Mechanics to Cementitious Composites, S.P. Shah (ed.), Nijhoff Publishers, Dordrecht (1985) 25–50.

    Google Scholar 

  19. Y.S. Jenq and S.P. Shah, International Journal of Fracture 38 (1988) 122–142.

    Google Scholar 

  20. J.G.M. van Mier and M.B. Nooru-Mohamed, in Fracture Toughness and Fracture Energy-Test Methods for Concrete and Rock, H. Mihashi et al. (eds.), Tohoku University, Sendai, Japan (1988) 433–447.

    Google Scholar 

  21. M. Suidan and W.C. Schnobrich, ASCE Journal of the Structural Division 99 (10) (1973) 2109–2122.

    Google Scholar 

  22. J.G. Rots and R. de Borst, ASCE Journal of Engineering Mechanics 113 (11) (1987) 1739–1758.

    Google Scholar 

  23. R. de Borst, Computers and Structures 25 (2) (1987) 211–224.

    Article  Google Scholar 

  24. J. Lubliner, J. Oliver, S. Oller and E. Onate, International Journal of Solids and Structures 25 (3) (1989) 229–326.

    Article  Google Scholar 

  25. J.G. Rots, in Fracture Toughness and Fracture Energy-Test Methods for Concrete and Rock, Tohoku University, Sendai, Japan (1988) 285–300.

    Google Scholar 

  26. Sk.S. Ali and A.W. Page, ASCER Journal of Structural Engineering 114 (8) (1988) 1761–1784.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rots, J.G. Smeared and discrete representations of localized fracture. Int J Fract 51, 45–59 (1991). https://doi.org/10.1007/BF00020852

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020852

Keywords

Navigation