Skip to main content
Log in

Isolation by PCR of a cDNA clone from pea petals with similarity to petunia and wheat zinc finger proteins

  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The C2H2 TFIIIA/Krüppel class of zinc finger proteins are an important group of regulatory nucleic acid binding factors and have been extensively studied in humans, Drosophila and yeast. We have employed 3′ RACE PCR, using a highly degenerate oligonucleotide primer, for the facile isolation of a C2H2 zinc finger protein cDNA (Pszf1) from pea petals. The Pszf1 cDNA open reading frame potentially encodes a protein with two widely separated zinc fingers similar to zinc finger proteins from petunia and wheat. This class of two-fingered zinc finger proteins, possessing a wide and variable linker sequence, appears to be unique to plants. Three regions outside the zinc finger domains are also conserved between the members of the plant zinc finger protein family and one of these regions is a candidate nuclear localisation signal. The Pszf1 amino acid sequence is most similar to that of the petunia Epf1 protein, they possess an interfinger linker sequence of approximately the same length and they have a similar expression pattern with maximal transcript accumulation in mature petals, suggesting that Pszf1 may be the pea homologue of the petunia Epf1 zinc finger gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Baltz R, Domon C, Pillay DTN, Steinmetz A: Characterisation of a pollen-specific cDNA from sunflower encoding a zinc finger protein. Plant 2: 713–721 (1992).

    Article  Google Scholar 

  2. Bellefroid EJ, Lecocq PJ, Benhida A, Poncelet DA, Belayew A, Martial JA: The human genome contains hundreds of genes coding for finger proteins of the Krüppel type. DNA 8: 377–387 (1989).

    PubMed  Google Scholar 

  3. Berg JM: Zinc fingers and other metal-binding domains. J Biol Chem 265: 6513–6516 (1990).

    PubMed  Google Scholar 

  4. Berg JM: Zinc finger proteins. Curr Opin Struct Biol 3: 11–16 (1993).

    Article  Google Scholar 

  5. Bray P, Lichter P, Thiesen HJ, Ward DC, Dawid IB: Characterisation and mapping of human genes encoding zinc finger proteins. Proc Natl Acad Sci USA 88: 9563–9567 (1991).

    PubMed  Google Scholar 

  6. Cleard F, Matsarskaia M, Spierer P: The modifier of position-effect variegation Suvar(3)7 of Drosophila: there are two alternative transcripts and seven scattered zinc fingers, each preceded by a tryptophan box. Nucl Acids Res 23: 796–802 (1995).

    PubMed  Google Scholar 

  7. Daniel-Vedele F, Caboche M: A tobacco cDNA clone encoding a GATA-1 zinc finger protein homologous to regulators of nitrogen metabolism in fungi. Mol Gen Genet 240: 365–373 (1993).

    PubMed  Google Scholar 

  8. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).

    PubMed  Google Scholar 

  9. Dretzen G, Bellard M, Sassone-Corsi P, Chambon P: A reliable method for the recovery of DNA fragments from agarose and polyacrylamide gels. Anal Biochem: 112: 295–298 (1981).

    PubMed  Google Scholar 

  10. Frohman MA, Dush MK, Martin GR: Rapid production of full-length cDNAs from rare transcripts; amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85: 8998–9002 (1988).

    PubMed  Google Scholar 

  11. Frohman MA, in: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A Guide to Methods and Applications, pp. 28–38. Academic Press, San Diego (1990).

    Google Scholar 

  12. Hanas J, Hazuda D, Bogenhagen D, Wu F, Wu CW: Xenopus transcription factor A requires zinc for binding to the 5S RNA gene. J Biol Chem 258: 14120–14125 (1983).

    PubMed  Google Scholar 

  13. Harker CL, Ellis THN, Coen ES: Identification and genetic regulation of the chalcone synthase multigene family in pea. Plant Cell 2: 185–194 (1990).

    Article  PubMed  Google Scholar 

  14. Hoovers JMN, Mannens M, John R, Bliek J, van Heyningen V, Porteous DJ, Leschot NJ, Westerveld A, Little PFR: High-resolution localisation of 69 potential human zinc finger protein genes: a number are clustered. Genomics 12: 254–263 (1992).

    PubMed  Google Scholar 

  15. Innis MA, Gelfand DH, Sninsky JJ, White TJ: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego (1990).

    Google Scholar 

  16. Katagiri F, Chua NH: Plant transcription factors: present knowledge and future challenges. Trends Genet 8: 22–27 (1992).

    Article  PubMed  Google Scholar 

  17. Reuter G, Giarre M, Farah J, Gausz J, Spierer A, Spierer P: Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein. Nature 344: 219–223 (1994).

    Article  Google Scholar 

  18. Sakamoto A, Minami M, Huh GH, Iwabuchi M: The putative zinc-finger protein WZF1 interacts with a cis-acting element of wheat histone genes. Eur J Biochem 217: 1049–1056 (1993).

    PubMed  Google Scholar 

  19. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  20. Schindler U, Beckmann H, Cashmore AR: HAT3.1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region. Plant J 4: 137–150 (1993).

    Article  PubMed  Google Scholar 

  21. Stanojevic D, Hoey T, Levine M: Sequence-specific DNA binding activities of the gap proteins encoded by hunchback and Krüppel in Drosophila. Nature 341: 331–335 (1989).

    Article  PubMed  Google Scholar 

  22. Takatsuji H, Mori M, Benfey PN, Ren L, Chua N-H: Characterisation of a zinc finger DNA-binding protein expressed specifically in petunia petals and seedlings. EMBO J 11: 241–249 (1991).

    Google Scholar 

  23. Takasuji H, Nakamura N, Katsumoto Y: A new family of zinc finger proteins in petunia: structure, DNA sequence recognition, and floral organ-specific expression. Plant Cell 6: 947–958 (1994).

    Article  PubMed  Google Scholar 

  24. Treisman J, Desplan C: The products of the Drosophila gap genes hunchback and Krüppel bind to the hunchback promoters. Nature 341: 335–337 (1989).

    Article  PubMed  Google Scholar 

  25. Verwoerd TC, Dekker BMM, Hoekma A: A small procedure for the rapid isolation of plant RNA. Nucl Acids Res 17: 2362 (1989).

    PubMed  Google Scholar 

  26. Waye MMY, Verhoeyen ME, Jones PT, Winter G: EcoK selection vectors for shotgun cloning into M13 and deletion mutagenesis. Nucl Acids Res 13: 8561–8571 (1985).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michael, A.J., Hofer, J.M.I. & Ellis, T.H.N. Isolation by PCR of a cDNA clone from pea petals with similarity to petunia and wheat zinc finger proteins. Plant Mol Biol 30, 1051–1058 (1996). https://doi.org/10.1007/BF00020815

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020815

Key words

Navigation