Skip to main content
Log in

Chemical and isotopic composition of karstic lakes in Jamaica, West Indies

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lakes in the limestone region of Jamaica exhibit a range of chemical characteristics that reflect varying inputs from precipitation, surface runoff and groundwater, together with the subsequent evolution of the water within the limnic environment. Detailed spatial and temporal sampling was conducted on one lake, Wallywash Great Pond. Chemical data, together with D/H, 18O/16O, 13C/12C and 87Sr/86Sr ratios confirm that the karstic spring waters entering the lake evolve chemically through degassing, mixing with rainfall and runoff, biogenic decalcification (resulting mainly from bicarbonate assimilation by the high biomass of submerged macrophytes), and evaporation. Modern carbonate sedimentation in Wallywash Great Pond is largely of high-Mg calcite. This is consistent with Mg/Ca molar ratios >2 within much of the lake. However, aragonite forms on the adaxial leaf surfaces of Potamogeton spp. This may be explained either as a result of locally elevated Mg concentrations or a high degree of supersaturation favouring very rapid carbonate precipitation. Two small lakes to the north of Wallywash Great Pond show minor influence of the Na-Cl dominated coastal aquifer, suggesting that coastal lakes are sensitive to variations in the boundary between fresh and brackish groundwater caused by changes in climate or sea level. Their 13C/12C ratios are strongly influenced by biogenic CO2 derived from plant respiration or decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, E. D. & D. H. N. Spence, 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in freshwaters. New Phytol. 87: 269–283.

    Google Scholar 

  • Asprey, G. F. & R. G. Robins, 1953. Vegetation of Jamaica. Ecol. Monogr. 23: 359–412.

    Google Scholar 

  • Berner, R. A., 1975. The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim. Cosmochim. Acta 39: 489–504.

    Article  Google Scholar 

  • Candelas, G. A. & G. C. Candelas, 1963. The West Indies. In D. G. Frey (ed.), Limnology in North America. University of Wisconsin Press, Madison, 435–450.

    Google Scholar 

  • Clemens, S. C., J. W. Farrell & L. P. Gromet, 1993. Synchronous changes in seawater strontium isotope composition and global climate. Nature 363: 607–610.

    Article  Google Scholar 

  • Cole, G. A., 1983. Textbook of Limnology. C. V. Mosby, St. Louis, 401 pp.

    Google Scholar 

  • Craig, H., 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12: 133–149.

    Article  Google Scholar 

  • Dean, W. E. & T. D. Fouch, 1983. Lacustrine Environment. In P. A. Scholle, D. G. Bebout & C. H. Moore (eds), Carbonate Depositional Environments. Am. Ass. Petrol. Geol. Mem. 33: 97–130.

  • Deines, P., 1980. The isotopic composition of reduced carbon. In P. Fritz & J. Ch. Fontes (eds), Handbook of Environmental Isotope Geochemistry, volume 1. Elsevier, Amsterdam: 329–406.

    Google Scholar 

  • DePaolo, D. J. & B. L. Ingram, 1985. High-resolution stratigraphy with strontium isotopes. Science 227: 938–941.

    Google Scholar 

  • Faure, G., 1986. Principles of Isotope Geology. Wiley, New York, 589 pp.

    Google Scholar 

  • Gleason, J. D., I. Friedman & B. B. Hanshaw, 1969. Extraction of dissolved carbonate species from natural waters for carbon isotope analysis. U.S. Geol. Surv. Prof. Paper 650-D, 248–250.

    Google Scholar 

  • Gonfiantini, R., 1986. Environmental isotopes in lake studies. In P. Fritz and J. Ch. Fontes (eds), Handbook of Environmental Isotope Geochemistry, volume 2. Elsevier,Amsterdam: 113–168.

    Google Scholar 

  • Gosz, J. A. & D. I. Moore, 1989. Strontiumisotope studies of atmospheric inputs to forested watershed in New Mexico. Biogeochem. 8: 115–134.

    Google Scholar 

  • Hales, P. E., 1992. Inorganic geochemistry of tropical lake and swamp sediments. Unpubl. DPhil Thesis, University of Oxford, 140 pp.

  • Hardie, L. A., J. P. Smoot & H. P. Eugster, 1978. Saline lakes and their deposits: a sedimentological approach in, A. Matter & M. E. Tucker (eds), Modern and Ancient Lake Sediments Spec. Publs. int. Ass. Sediment. 2: 7–41.

  • Hart, C. W., 1964. A contribution to the limnology of Jamaica and Puerto Rico. Carib. J. Sci. 4: 331–334.

    Google Scholar 

  • Hodell, D. A., P. A. Mueller & J. R. Garrido, 1991. Variations in the strontium isotopic composition of seawater during the Neogene. Geology 19: 24–27.

    Article  Google Scholar 

  • Holmes, J. A., 1991. The determination of magnesium, strontium and manganese in non-marine ostracod shells by ICP-AES and reconstruction of the late Quaternary palaeolimnology of Wallywash Great Pond, Jamaica. Abstracts and Programmes, 2nd Kingston Conference on Plasma Spectrometry in the Earth Sciences 61.

  • Holmes, J. A., F. A. Street-Perrott, T. Heaton, R. A. Perrott, P. E. Hales & C. Paul, 1991. The impact of climate and sea-level change in the northern neotropics: the palaeolimnology of Wallywash Great Pond, Jamaica, over the last 120 000 years. Abstract and Programmes, XIII INQUA Congress, Beijing 139.

  • Jamaican Meteorological Service, 1973. The Climate of Jamaica. Jamaican Meteorological Service, Kingston, 68 pp.

    Google Scholar 

  • Kadano, Y., 1980. Photosynthetic carbon sources in some Potamogeton species. Bot. Mag. Tokyo 93: 185–193.

    Google Scholar 

  • Katz, A., 1973. The interaction of magnesium with calcite during crystal growth at 25–90 °C and one atmosphere pressure. Geochim. Cosmochim. Acta 37: 1563–1586.

    Article  Google Scholar 

  • Kelts, K. & K. J. Hsü, 1978. Freshwater carbonate sedimentation. In A. Lerman,(ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag, New York, 295–323.

    Google Scholar 

  • Kelts, K. & M. Talbot, 1990. Lacustrine carbonates as geochemical archives of environmental change and biotic⇃iotic interactions. In M. M. Tilzer & C. Serruya (eds), Large Lakes: Ecological Structure and Function. Science and Technology Publishers, Madison, 288–315.

    Google Scholar 

  • Lippmann, F., 1973. Sedimentary Carbonate Minerals. Springer-Verlag, Berlin, 228 pp.

    Google Scholar 

  • Lowenhaupt, B., 1956. The transport of calcium and other cations in submerged aquatic plants. Biol. Rev. 31: 371–395.

    Google Scholar 

  • Lucas, W. J., M. T. Tyree & A. Petrov, 1978. Characterisation of photosynthetic 14 carbon assimilation by Potamogeton lucens L. J. exp. Bot. 29: 1409–1421.

    Google Scholar 

  • Mook, W. G., 1986. 13C in atmospheric CO2. Neth. J. Sea Res. 20: 211–223.

    Article  Google Scholar 

  • Müller, G., 1971. Aragonite inorganic precipitation in a freshwater lake. Nature Phys. Sci. 229: 18.

    Google Scholar 

  • Müller, G., G. Irion & U. Foerstner, 1972. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften 59: 158–164.

    Google Scholar 

  • Nkemdirim, L. C., 1979. Spatial and seasonal distribution of rainfall and runoff in Jamaica. Geogr. Rev. 69: 288–301.

    Google Scholar 

  • Plummer, L. N., B. F. Jones & A. H. Truesdell, 1976. WATEQF-a FORTRAN IV version of WATEQ, a computer program for calculating chemical equilibria of natural waters. U.S. Geol. Surv. Water-Resour. 76–13: 1–61.

    Google Scholar 

  • Prins, H. B. A. & R. J. Helder, 1985. HCO 3 assimilation by Potamogeton lucens: polar cation transport and the role of H+ extrusion. In W. J. Lucas & J. A. Berry (eds), Organic carbon update by aquatic photosynthetic organisms. American Society of Plant Physiologists, Rockvill MD: 271–286.

    Google Scholar 

  • Prins, H. B. A., J. F. H. Snel, R. J. Helder & P. E. Sanstra, 1980. Photosynthetic HCOf-♪p3 utilization and OHf- excretion in aquatic angiosperms. Light-induced pH changes at the leaf surface. Pl. Physiol. 66: 818–822.

    Google Scholar 

  • Raven, J. A., 1970. Exogenous inorganic carbon sources in plant photosynthesis. Biol. Rev. 45: 167–221.

    Google Scholar 

  • Serruya, C. & V. Pollingher, 1983. Lakes of the Warm Belt. Cambridge University Press, Cambridge, 500 pp.

    Google Scholar 

  • Smith, F. A., 1985. Historical perspective on HCO 3 assimilation. In, W. J. Lucas & J. A. Berry (eds), Organic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiologists, Rockvill MD: 1–15.

    Google Scholar 

  • Smith, F. A. & N. A. Walker, 1980. Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO 3 and to carbon isotope discrimination. New Phytol. 86: 245–259.

    Google Scholar 

  • Stark, J., 1963. Jamaica — Parish of St Elizabeth. Soil and Land-use Surveys: Soil Research Section of the Regional Research Centre, Imperial College of Tropical Agriculture, UWI, Trinidad 14.

    Google Scholar 

  • Stark, J., 1964. Jamaica — Parish of Westmoreland. Soil and Land-use Surveys: Soil Research Section of the Regional Research Centre, Imperial College of Tropical Agriculture, UWI, Trinidad 25.

    Google Scholar 

  • Street-Perrott, F. A., P. E. Hales, R. A. Perrott, J. Ch. Fontes & A. Pearson, 1993. Limnology and palaeolimnology of a tropical karstic lake: Wallywash Great Pond, Jamaica. J. Paleolimnol. 9: 3–22.

    Google Scholar 

  • Sweeting, M. M., 1958. The karstlands of Jamaica. Geogr. J. 124: 184–199.

    Google Scholar 

  • Talbot, M. R., 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopes in primary lacustrine carbonates. Chem. Geol. (Isot. Geosci. Sect.) 80: 261–279.

    Google Scholar 

  • Terlecky, P. M., 1974. The origin of a late Pleistocene and Holocene marl deposit. J. Sedim. Petrol. 44: 456–465.

    Google Scholar 

  • UND/FAO, 1971. Groundwater surveys in two areas of the interior, Jamaica. Appraisal report of the Pedro Plains, St. Elizabeth. AL:SF/JAM3 Technical Report 1: 1–192.

    Google Scholar 

  • UND/FAO, 1974. Development and management of water resources, Jamaica. Negril Basin. AGL:DP/JAM/70/512 Technical Report 4: 1–129.

    Google Scholar 

  • Versey, H. R., 1959. The hydrologic character of the White Limestone Formation of Jamaica. Trans. 2nd Carib. Conf.: 59–68.

  • Zans, V. A., L. J. Chubb, H. R. Versey, J. B. Williams, E. Robinson & D. L. Cook, 1962. Synopsis of the Geology of Jamaica. Bull. Geol. Surv. Jam. 4: 1–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, J.A., Street-Perrott, F.A., Heaton, T.H.E. et al. Chemical and isotopic composition of karstic lakes in Jamaica, West Indies. Hydrobiologia 312, 121–138 (1995). https://doi.org/10.1007/BF00020768

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020768

Key words

Navigation