Skip to main content
Log in

Creep crack growth behavior in 316 stainless steel at 594°C (1100°F)

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The creep crack growth behavior of a type 316 stainless steel was characterized at 594°C (1100°F) using precracked single edge notch specimens loaded in displacement rate control. The steady-state crack growth rate, da/dt, correlated with J-integral and did not correlate with C *. The creep crack growth behavior in this material and temperature is compared with our previous creep crack growth rate data on a Cr-Mo-V steel at 538°C (1000°F) and on type 304 stainless steel at 594°C in which da/dt correlated with C *. A detailed discussion is included on why in some materials creep crack growth rate correlates with J integral and in others it correlates with C *.

Résumé

On a caractérisé le comportement à la croissance d'une fissure de fluage dans un acier inoxydable de type 316 à 594°C (1100°F) en utilisant des éprouvettes à entaille simple latérale préfissurée sollicitées sous une vitesse de déplacement contrôlée. La vitesse de croissance d'une fissure statique da/dt a pu être corrélée avec l'intégrale J mais non avec C *. On a comparé le comportement à la croissance d'une fissure de fluage dans ce matériau et à cette température, avec les données précédemment obtenues pour la vitesse de croissance d'une fissure de fluage dans un acier au Cr-Mo-V à 538°C (1000°F) et dans un acier inoxydable type 304 à 594°C, matériaux pour lesquels da/dt était en corrélation avec C *. On procède à une discussion détaillée sur les raisons pour lesquelles dans certains matériaux la vitesse de croissance d'une fissure de fluage est en corrélation avec l'intégrale J et dans d'autres avec C *.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Hill, “Mechanical Properties Test Data for Structural Materials”, ORNL-5237, Oakridge National Laboratory, Dec. 1976.

  2. V.K. Sikka, “Product Form Characterization of Reference Heat of Type 316SS”, ORNL-5384, Oak Ridge National Laboratory, Feb. 1978.

  3. S. Taira, R. Ohtani and T. Kitamura, Transactions of the ASME, Journal of Engineering Materials and Technology 101 (1979) 154–161.

    Google Scholar 

  4. E813-81, “Standard Test for J IC, A Measure of Fracture Toughness”, ASTM Book of Standards, Part 10 (1981) 810–828.

  5. A. Saxena, Engineering Fracture Mechanics 13 (1980) 741–750.

    Article  Google Scholar 

  6. H.H. Johnson, Materials Research and Standards 5, No. 9 (1965) 442–445.

    Google Scholar 

  7. D.J. Smith and G.A. Webster, “Estimates of C * Parameter for Crack Growth n Creeping Materials”, Second International Symposium on Elastic-Plastic Fracture, American Society for Testing and Materials”, Philadelphia, Oct. 1981.

  8. A. Saxena, T.T. Shih and H.A. Ernst, “Wide Range Creep Crack Growth rAte Behavior of A470 Class 8 (Cr-Mo-V) Steel”, Scientific Paper 82-1D7-EVFLA-P1 Westinghouse R&D Center, 15th National Symposium on Fracture Mechanics (ASTM), College Park, MD, July 1982.

  9. H.A. Ernst, in Fracture Mechanics: Fourteenth Symposium—Vol. I: Theory and Analysis, ASTM STP 791, J.C. Lewis and G. Sines Eds. (1983) I499–I519.

  10. V. Kumar, M.D. German and C.F. Shih, “An Engineering Approach to Elastic-Plastic Fracture Analysis”, EPRI NP 1931, Electric Power Research Institute, Palo Alto, July 1981.

    Google Scholar 

  11. H. Tada, P.C. Paris and G.R. Irwin, “The Stress Analysis of Cracks Handbook”, Del Research Co., Hellertown, PA (1973).

    Google Scholar 

  12. H.A. Ernst, P.C. Paris and J.D. Landes, in Fracture Mechanics ASTM STP 743, R. Roberts Ed. (1981) 476–502.

  13. A. Saxena, in Fracture Mechanics, ASTM STP 700 (1980) 131–151.

  14. H.H. Johnson and P.C. Paris, Engineering Fracture Mechanics 1 (1968) 3–45.

    Article  Google Scholar 

  15. H. Riedel and J.R. Rice, in Fracture Mechanics, ASM STP 700 (1980) 112–130.

  16. C.Y. Hui and H. Riedel, International Journal of Fracture 17, No. 4 (1981) 409–425.

    Google Scholar 

  17. H. Riedel and W. Wagner, in Advances in Fracture Research, 5th International Conference on Fracture, ICF-5, Cannes, March–April 1981, 683–690.

  18. C.Y. Hui, “Steady State Crack Growth in Elastic Power-Law Creeping Materials”, MECH-21, Division of Applied Sciences, Harvard University, Aug 1981, also to appear in the Proceedings of the Second International Conference on Elastic-Plastic Fracture, ASTM, Philadelphia, Oct. 1981.

  19. K. Sadananda and P. Shahinian, Metallurgical Transactions A (1977) 439–449.

  20. J.W. Hutchinson and P.C. Paris, in Elastic-Plastic Fracture, ASTM STP 668 (1979) 37–64.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, A., Ernst, H.A. & Landes, J.D. Creep crack growth behavior in 316 stainless steel at 594°C (1100°F). Int J Fract 23, 245–257 (1983). https://doi.org/10.1007/BF00020693

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020693

Keywords

Navigation