Skip to main content
Log in

Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum)

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A clone for an embryoid-abundant, early cysteine-labeled metallothionein (EcMt) gene has been isolated from a wheat pollen embryoid cDNA library. The transcript of this gene was only expressed in embryogenic microspores, pollen embryoids, and developing zygotic embryos of wheat. Accumulation of the EcMt mRNA showed a direct and positive correlation with an increase of the plant hormone, abscisic acid (ABA) in developing pollen embryoids. Treating cultures with an inhibitor of ABA biosynthesis, fluridone, suppressed not only ABA accumulation but also the appearance of the EcMt gene transcript and the ability of microspores to form embryoids. These results suggest that the EcMt gene may act as a molecular marker for pollen embryogenesis because ABA biosynthesis is accompanied by the increased expression of the EcMt transcript that coincides with the differentiation of pollen embryoids in wheat anther cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 215: 403–410 (1990).

    Article  PubMed  Google Scholar 

  2. Andrews GK: Regulation of metallothionein gene expression Prog Food Nutr Sci 14: 193–258 (1990).

    PubMed  Google Scholar 

  3. Bedinger PA, Ederton MD: Developmental staging of maize microspores reveals a transition in developing microspore proteins. Plant Physiol 92: 474–479 (1990).

    Google Scholar 

  4. Boutilier KA, Ginés MJ, DeMoor JM, Baszczynski CL, Iyer VN, Miki BL: Expression of the BnmNAP subfamily of napin genes coincides with the induction of Brassica microspore embryogenesis. Plant Mol Biol 26: 1711–1723 (1994).

    PubMed  Google Scholar 

  5. Buchanan-Wollaston V: Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus. Identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol 105: 839–846 (1994).

    Article  PubMed  Google Scholar 

  6. De SK, McMaster MT, Dey SK, Andrews GK: Cell-specific metallothionein gene expression in mouse decidua and placentae. Development 107: 611–621 (1989).

    PubMed  Google Scholar 

  7. De SK, Enders GC, Andrews GK: High levels of metallothionein messenger RNAs in male germ cells of the adult mouse. Mol Endocrinol 5: 626–636 (1991).

    Google Scholar 

  8. Dunwell JM: Mechanisms of microspore embryogenesis. In: Dattée Y, Dumas C, Gallais (eds). Reproductive Biology and Plant Breeding, pp. 121–130. Springer-Verlag, Berlin (1992).

    Google Scholar 

  9. Feinberg AP, Vogelstein B: A technique for radio-labeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  10. DeFramond AJ: A metallothionein-like gene from maize (Zea mays). Cloning and characterization. FEBS Lett 290: 103–106 (1991).

    Article  PubMed  Google Scholar 

  11. Guha S, Maheshwari SC: In vitro production of embryos from anthers of Datura. Nature 204: 497 (1964).

    Google Scholar 

  12. Guha S, Maheshwari SC: Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 212: 97–98 (1966).

    Google Scholar 

  13. Kawashima I, Kennedy TD, Chino M, Lane BG: Wheat Ec metallothionein genes like mammalian Zn2+ metallothionein genes, wheat Zn2+ metallothionein genes are conspicuously expressed during embryogenesis. Eur J Biochem 209: 971–976 (1992).

    PubMed  Google Scholar 

  14. Kyo M, Harada H: Specific phosphoproteins in the initial period of tobacco pollen embryogenesis. Planta 182: 58–63 (1990).

    Google Scholar 

  15. Logemann J, Schell J, Willmitzer L: Improved method for the isolation of RNA from plant tissues. Anal Biochem 163: 16–20 (1987).

    PubMed  Google Scholar 

  16. Mejza SJ, Morgant V, DiBona DE, Wong JR: Plant regeneration from isolated microspores of Triticum aestivum. Plant Cell Rep 12: 149–153 (1993).

    Google Scholar 

  17. Okumura N, Nishizawa NK, Umehara Y, Ohata T, Nakanishi H, Yamaguchi T, Chino M, Mori S: A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare. Plant Mol Biol 25: 705–719 (1994).

    PubMed  Google Scholar 

  18. Pechan PM, Bartels D, Brown D, Schell J: Messenger-RNA and protein changes associated with induction of Brassica microspore embryogenesis. Planta 184: 161–165 (1991).

    Google Scholar 

  19. Raghavan V: Embryogenesis in Angiosperms: A Developmental and Experimental Study. Cambridge University Press, New York (1986).

    Google Scholar 

  20. Reynolds TL: Ultrastructure of pollen embryogenesis. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol 12: Haploids in Crop Improvement I, pp. 66–82. Springer-Verlag, Berlin (1990).

    Google Scholar 

  21. Reynolds TL: A cytological analysis of microspores of Triticum aestivum (Poaceae) during normal ontogeny and induced embryogenic development. Am J Bot 80: 569–576 (1993).

    Google Scholar 

  22. Reynolds TL, Kitto SL: Identification of embryoid-abundant genes that are temporally expressed during pollen embryogenesis in wheat anther cultures. Plant Physiol 100: 1744–1750 (1992).

    Google Scholar 

  23. Vergne P, Dumas C: Isolation of viable wheat male gametophytes of different stages of development and variations in their protein patterns. Plant Physiol 88: 969–972 (1988).

    Google Scholar 

  24. Vergne P, Riccardi F, Beckert M, Dumas C: Identification of a 32-kDa anther marker protein for androgenic response in maize, Zea mays L. Theor Appl Genet 86: 843–850 (1993).

    Article  Google Scholar 

  25. Webb M: Metallothionein in regeneration, reproduction, and development. Experientia (Suppl) 52: 483–498 (1987).

    Google Scholar 

  26. Zeevaart JAD, Creelman RA: Metabolism and physiology of abscisic acid. Ann Rev Plant Physiol Plant Mol Biol 39: 439–473 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, T.L., Crawford, R.L. Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum). Plant Mol Biol 32, 823–829 (1996). https://doi.org/10.1007/BF00020480

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020480

Key words

Navigation