Skip to main content
Log in

A novel type of DNA-binding protein interacts with a conserved sequence in an early nodulin ENOD12 promoter

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The pea genes PsENOD12A and PsENOD12B are expressed in the root hairs shortly after infection with the nitrogen-fixing bacterium Rhizobium leguminosarum bv. viciae or after application of purified Nod factors. A 199 bp promoter fragment of the PsENOD12B gene contains sufficient information for Nod factor-induced tissue-specific expression. We have isolated a Vicia sativa cDNA encoding a 1641 amino acid protein, ENBP1, that interacts with the 199 bp ENOD12 promoter. Two different DNA-binding domains were identified in ENBP1. A domain containing six AT-hooks interacts specifically with an AT-rich sequence located between positions −95 and −77 in the PsENOD12B promoter. A second domain in ENBP1 is a cysteine-rich region that binds to the ENOD12 promoter in a sequence non-specific but metal-dependent way. ENBP1 is expressed in the same cell types as ENOD12. However, additional expression is observed in the nodule parenchyma and meristem. The presence of three small overlapping ORFs in the 5′-untranslated region of the ENBP1 cDNA indicates that ENBP1 expression might be regulated at the translational level. The interaction of ENBP1 with a conserved AT-rich element within the ENOD12 promoter and the presence of the ENBP1 transcript in cells expressing ENOD12 strongly suggest that ENBP1 is a transcription factor involved in the regulation of ENOD12. Finally, the C-terminal region of ENBP1 shows strong homology to a protein from rat that is specifically expressed in testis tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abastado JP, Miller PF, Jackson BM, Hinnebusch AG: Suppression of ribosomal reintiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol Cell Biol 11: 486–496 (1991).

    PubMed  Google Scholar 

  2. Allison LA, Kiss GB, Bauer P, Poiret M, Pierre M, Savoure A, Kondorosi E, Kondorosi A: Identification of two alfalfa early nodulin genes with homology to members of the pea Enod12 gene family. Plant Mol Biol 21: 375–380 (1993).

    PubMed  Google Scholar 

  3. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current Protocols in Molecular Biology. Wiley, New York (1994).

    Google Scholar 

  4. Bauer P, Crespi MD, Szecsi J, Allison LA, Schultze M, Ratet P, Kondorosi E, Kondorosi A: Alfalfa Enod12 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion. Plant Physiol 105: 585–592 (1994).

    Article  PubMed  Google Scholar 

  5. Cachon-Gonzalez MB, Fenner S, Coffin JM, Moran C, Best S, Stoye JP: Structure and expression of the hairless gene of mice. Proc Natl Acad Sci USA 91: 7717–7721 (1994).

    PubMed  Google Scholar 

  6. Chelsky D, Ralph R, Jonak G: Sequence requirements for synthetic peptide-mediated translocation to the nucleus. Mol Cell Biol 9: 2487–2492 (1989).

    PubMed  Google Scholar 

  7. Churchill ME, Travers AA: Protein motifs that recognize structural features of DNA. Trends Biochem Sci 16: 92–97 (1991).

    Article  PubMed  Google Scholar 

  8. Forde BG, Freeman J, Oliver JE, Pineda M: Nuclear factors interact with conserved A/T-rich elements upstream of a nodule-enhanced glutamine synthetase gene from French bean. Plant Cell 2: 925–939 (1990).

    Article  PubMed  Google Scholar 

  9. Govers F, Gloudemans T, Moerman M, vanKammen A, Bisseling T: Expression of plant genes during the development of pea root nodules. EMBO J 4: 861–867 (1985).

    Google Scholar 

  10. Govers F, Harmsen H, Heidstra R, Michielsen P, Prins M, vanKammen A, Bisseling T: Characterization of the pea ENOD12B gene and expression analyses of the two ENOD12 genes in nodule, stem and flower tissue. Mol Gen Genet 228: 160–166 (1991).

    PubMed  Google Scholar 

  11. Gubler U: Second-strand cDNA synthesis: mRNA fragments as primers. Meth Enzymol 152: 330–335 (1987).

    PubMed  Google Scholar 

  12. Hoog C, Schalling M, Grunder-Brundell E, Daneholt B: Analysis of a murine male germ cell-specific transcript that encodes a putative zinc finger protein. Mol Reprod Devel 30: 173–181 (1991).

    PubMed  Google Scholar 

  13. Horvath B, Heidstra R, Lados M, Moerman M, Spaink HP, Prome JC, vanKammen A, Bisseling T: Lipo-oligosaccharides of Rhizobium induce infection-related early nodulin gene expression in pea root hairs. Plant J 4: 727–733 (1993).

    PubMed  Google Scholar 

  14. Jacobsen K, Laursen NB, Jensen EO, Marcker A, Poulsen C, Marcker KA: HMGI-like proteins from leaf and nodule nuclei interact with different AT motifs in soybean nodulin promoters. Plant Cell 2: 85–94 (1990).

    Article  PubMed  Google Scholar 

  15. Jensen EØ, Marcker KA, Schell J, deBruijn FJ: Interaction of a nodule-specific, trans-acting factor with distinct DNA elements in the soybean leghaemoglobin lbc3 5′ upstream region. EMBO J 7: 1265–1271 (1988).

    Google Scholar 

  16. Jorgensen JE, Stougaard J, Marcker A, Marcker KA: Root nodule specific gene regulation: analysis of the soybean nodulin N23 gene promoter in heterologous symbiotic systems. Nucl Acids Res 16: 39–50 (1988).

    PubMed  Google Scholar 

  17. Journet EP, Pichon M, Dedieu A, deBilly F, Truchet G, Barker DG: Rhizobium meliloti Nod factors elicit cell-specific transcription of ENOD12 gene in transgenic alfalfa. Plant J 6: 241–249 (1994).

    Article  PubMed  Google Scholar 

  18. Kessel M, Gruss P: Open reading frames and translational control. Nature 332: 117–118 (1988).

    Google Scholar 

  19. Korfhage U, Trezzini GF, Meier I, Hahlbrock K, Somssich IE: Plant homeodomain protein involved in transcriptional regulation of a pathogen defense-related gene. Plant Cell 6: 695–708 (1994).

    Article  PubMed  Google Scholar 

  20. Lauridsen P, Franssen H, Stougaard J, Bisseling T, Marcker KA. Conserved regulation of the soybean early nodulin ENOD2 gene promoter in determinate and indeterminate transgenic root nodules. Plant J 3: 483–492 (1993).

    Article  PubMed  Google Scholar 

  21. Laursen NB, Larsen K, Knudsen JY, Hoffmann HJ, Poulsen C, Marcker KA, Jensen EO: A protein binding AT-rich sequence in the soybean leghemoglobin c3 promoter is a general cis element that requires proximal DNA elements to stimulate transcription. Plant Cell 6: 659–668 (1994).

    Article  PubMed  Google Scholar 

  22. Lutcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA: Selection of AUG initiator codons differs in plants and animals. EMBO J 6: 43–48 (1987).

    PubMed  Google Scholar 

  23. Maina CV, Riggs PD, Grandea AG, Slatko BE, Moran LS, Tagliamonte JA, McReynolds LA, Guan C. A vector to express and purify foreign proteins in Escherichia coli by fusion to, and separation from, maltose binding proteins. Gene 74: 365–373 (1988).

    Article  PubMed  Google Scholar 

  24. Metz BA, Welters P, Hoffmann HJ, Jensen EO, Schell J, deBrujin FJ: Primary structure and promoter analysis of leghemoglobin genes of the stem-nodulated tropical legume Sesbania rostrata: conserved coding sequences, cis-elements and trans-acting factors. Mol Gen Genet 214: 181–191 (1988).

    PubMed  Google Scholar 

  25. Mylona P, Pawlowski K, Bisseling T: Symbiotic nitrogen fixation. Plant Cell 7: 869–885 (1995).

    Article  PubMed  Google Scholar 

  26. Nieto-Sotelo J, Ichida A, Quail PH: PF1: an A-T hook-containing DNA binding protein from rice that interacts with a functionally defined d(AT) rich element in the oat phytochrome A3 gene promoter. Plant Cell 6: 287–301 (1994).

    Article  PubMed  Google Scholar 

  27. Pallisgaard N, Pedersen FS, Birkelund S, Jorgensen P: A common multiple cloning site in a set of vectors for expression of eukaryotic genes in mammalian, insect and bacterial cells. Gene 138: 115–118 (1994).

    Article  PubMed  Google Scholar 

  28. Perlick AM, Pühler A: A survey of transcripts expressed specifically in root nodules of broadbean (Vicia faba L.). Plant Mol Biol 22: 957–970 (1993).

    PubMed  Google Scholar 

  29. Pichon M, Journet EP, Dedieu A, deBilly F, Truchet G, Barker DG: Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa. Plant Cell 4: 1199–1211 (1992).

    Article  PubMed  Google Scholar 

  30. Quandt H-J, Pühler A, Broer I: Transgenic root nodules of Vicia hirsuta. Mol Plant-Microbe Interact 6: 699–706 (1993).

    Google Scholar 

  31. Reeves R, Nissen MS. The AT-DNA-binding domain of mammalian high mobility group I chromosomal proteins A novel peptide motif for recognizing DNA structure. J Biol Chem 265: 8573–8582 (1990).

    PubMed  Google Scholar 

  32. Scheres B, van deWiel C, Zalensky A, Horvath B, Spaink H, vanEck H, Zwartkruis F, Wolters AM, Gloudemans T, vanKammen A, Bisseling T: The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction. Cell 60: 281–294 (1990).

    Article  PubMed  Google Scholar 

  33. Scheres B, vanEngelen F, van derKnaap E, van deWiel C, vanKammen A, Bisseling T: Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell 2: 687–700 (1990).

    Article  PubMed  Google Scholar 

  34. She Q, Lauridsen P, Stougaard J, Marcker KA: Minimal enhancer elements of the leghemoglobin lba and lbc3 gene promoters from Glycine max L. have different properties. Plant Mol Biol 22: 945–956 (1993).

    Article  PubMed  Google Scholar 

  35. She Q, Sandal NN, stougaard J, Marcker KA: Comparative sequence analysis of cis elements present in Glycine max L. leghemoglobin lba and lbc3 genes. Plant Mol Biol 22: 931–935 (1993).

    Article  PubMed  Google Scholar 

  36. Shen WJ, Williamson MS, Forde BG: Functional analysis of the promoter region of a nodule-enhanced glutamine synthetase gene from Phaseolus vulgaris L. Plant Mol Biol 19: 837–846 (1992).

    Article  PubMed  Google Scholar 

  37. Southern EM: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517 (1975).

    PubMed  Google Scholar 

  38. Stougaard J, Jorgensen JE, Christensen T, Kuhle A, Marcker KA: Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin (lbc3 and N23) gene promoters. Mol Gen Genet 220: 353–360 (1990).

    PubMed  Google Scholar 

  39. Stougaard J, Sandal NN, Grøon A, Kühle A, Marcker KA: 5′ Analysis of the soybean leghaemoglobin lbc3 gene: Regulatory elements required for promoter activity and organ specificity. EMBO J 6: 3565–3569 (1987).

    Google Scholar 

  40. Szabados L, Ratet P, Grunenberg B, de-Bruijn FJ: Functional analysis of the Sesbania rostrata leghemoglobin glb3 gene 5′-upstream region in transgenic Lotus corniculatus and Nicotania tabacum plants. Plant Cell 2: 973–986 (1990).

    Article  PubMed  Google Scholar 

  41. Tjaden G, Coruzzi GM: A novel AT-rich DNA binding protein that combines an HMG I-like DNA binding domain with a putative transcription domain. Plant Cell 6: 107–118 (1994).

    Article  PubMed  Google Scholar 

  42. van deWiel C, Scheres B, Franssen H, vanLierop MJ, vanLammeren A, vanKammen A, Bisseling T: The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules. EMBO J 9: 1–7 (1990).

    PubMed  Google Scholar 

  43. Vijn I, Christiansen H, Lauridsen P, Kardailsky I, Quandt H-J, Broer I, Drenth J, Jensen EØ, vanKammen A, Bisseling T: A 200 bp region of the pea ENOD12 promoter is sufficient for nodule-specific and Nod factor induced expression. Plant Mol Biol 28: 1103–1110 (1995).

    PubMed  Google Scholar 

  44. Vijn I, Martinez-Abarca F, Wang W-C, dasNeves L, vanBrussel A, vanKammen A, Bisseling T: Early nodulin gene expression during Nod factor-induced processes in Vicia sativa. Plant J 8: 111–119 (1995).

    Article  PubMed  Google Scholar 

  45. Vinson CR, LaMarco KL, Johnson PF, Landschulz WH, McKnight SL: In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Genes Devel 2: 801–806 (1988).

    PubMed  Google Scholar 

  46. Yang WC, Horvath B, Hontelez J, vanKammen A, Bisseling: In situ localization of Rhizobium mRNAs in pea and root nodules; nifA and nifH localization. Mol Plant-Microbe Interact 4: 464–468 (1991).

    Google Scholar 

  47. Zimmer A, Zimmer AM, Reynolds K: Tissue specific expression of the retinoic acid receptor-β2: regulation by short open reading frames in the 5′-noncoding region. J Cell Biol 127: 1111–1119 (1994).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christiansen, H., Hansen, A.C., Vijn, I. et al. A novel type of DNA-binding protein interacts with a conserved sequence in an early nodulin ENOD12 promoter. Plant Mol Biol 32, 809–821 (1996). https://doi.org/10.1007/BF00020479

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020479

Key words

Navigation