Advertisement

International Journal of Fracture

, Volume 52, Issue 1, pp 47–65 | Cite as

Application of a moving variable order singular element to dynamic fracture mechanics

  • J. C. Thesken
  • Peter Gudmundson
Article

Abstract

An elasto-dynamic moving element formulation incorporating a variable order singular element to enhance the local crack tip description is presented. The moving mesh zone is embedded in a finite global mesh providing a functional tool for the analysis of dynamic crack growth experiments.

In the following, the necessary numerical techniques are developed and tested using problems possessing analytical solutions. The promising results reported here motivate further work to include viscoplastic material behavior in the formulation.

Keywords

Fracture Mechanic Material Behavior Numerical Technique Element Formulation Growth Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Brickstad, International Journal of Fracture 21 (1983) 177–194.Google Scholar
  2. 2.
    B. Brickstad, Journal of Mechanics and Physics of Solids 31 (1983) 307–327.Google Scholar
  3. 3.
    B.R. Bass, C.E. Pugh, J.G. Merkle, D.J. Naus and J. Keeney-Walker, in ASTM-STP 969, American Society for Testing and Materials, Philadelphia, Pa (1987) 691–733.Google Scholar
  4. 4.
    B.R. Bass, C.E. Pugh, J. Keeney-Walker, and C.W. Schwartz, in Proceedings of U.S. Nuclear Regulatory Commission Fifteenth Water Reactor Safety Information Meeting, National Bureau of Standards, Gaithersburg, Md, NUREG/CP-0091 (1988) 52–91.Google Scholar
  5. 5.
    B. Brickstad, ‘Wide-Plate Analysis of WP-1.2 and Wp-1.5,’ presented at the Third Annual HSST Workshop on Crack Arrest Technology, National Bureau of Standards, Gaithersburg, Md (1987); also in Final Report Nordic Liason (NKA) Project for Atomic Energy MAT 550 (1990).Google Scholar
  6. 6.
    J.C. Thesken and P. Gudmundson, Application of the Akin Singular Element to Dynamic Fracture Mechanics. Report 65, TRITA-HFL-0065 ISSN 0281–1502, Department of Solid Mechanics, The Royal Institute of Technology, Stockholm (1985).Google Scholar
  7. 7.
    J.C. Thesken and P. Gudmundson, Computational Mechanics 2 (1987) 307–316.Google Scholar
  8. 8.
    S. Östlund and P. Gudmundson, Computers and Structures 25 (1987) 765–774.Google Scholar
  9. 9.
    S. Östlund, On Numerical Modeling and Fracture Criteria of Dynamic Elastic-Viscoplastic Crack Growth, Report 95, TRITA-HFL-0095 ISSN 0281–1502, Department of Solid Mechanics, The Royal Institute of Technology, Stockholm (1988).Google Scholar
  10. 10.
    S.N. Atluri, T. Nishioka and M. Nakagaki, in Nonlinear and Dynamic Fracture Mechanics, ASME AMD-35 (1979) 37–67.Google Scholar
  11. 11.
    T. Nishioka, R.B. Stonesifer and S.N. Atluri, Engineering Fracture Mechanics 15 (1981) 205–218.Google Scholar
  12. 12.
    T. Nishioka and S.N. Atluri, Engineering Fracture Mechanics 18 (1983) 23–33.Google Scholar
  13. 13.
    T. Nishioka and S.N. Atluri, ASME Journal of Applied Mechanics 47 (1980) 570–583.Google Scholar
  14. 14.
    Z.P. Bazant, J.L. Glazik and J.D. Achenbach, Computers and Structures 8 (1978) 193–198.Google Scholar
  15. 15.
    T. Nishioka and S.N. Atluri, in Computational Methods in the Mechanics of Fracture, Elsevier, Amsterdam (1986) Chapter 10.Google Scholar
  16. 16.
    H.M. Koh and R.B. Haber, ASME Journal of Applied Mechanics 53 (1986) 839–845.Google Scholar
  17. 17.
    H.M. Koh, H.-S. Lee and R.B. Haber, Computational Mechanics 3 (1988) 141–155.Google Scholar
  18. 18.
    L.B. Freund, Journal of the Mechanics and Physics of Solids 20 (1972) 129–152.Google Scholar
  19. 19.
    L.B. Freund, Journal of the Mechanics and Physics of Solids 21 (1973) 47–61.Google Scholar
  20. 20.
    F. Nilsson, International Journal of Fracture 8 (1972) 403–411.Google Scholar
  21. 21.
    S.N. Atluri and M. Nakagaki, in Computational Methods in the Mechanics of Fracture, Elsevier, Amsterdam (1986) Chapter 6.Google Scholar
  22. 22.
    Y. Yamada, Y. Ezawa and I. Nishuiguchi, International Journal of Numerical Methods in Engineering 14 (1979) 1525–1544.Google Scholar
  23. 23.
    J.E. Akin, International Journal of Numerical Methods in Engineering 10 (1976) 1249–1259.Google Scholar
  24. 24.
    P. Sindelar, Brottmekanisk Dimensionering Mot Utmattning. Rapport HU-2013, Flygtekniska Försöksanstalten, Stockholm (1978).Google Scholar
  25. 25.
    B. Brickstad and F. Nilsson, International Journal of Fracture 16 (1980) 71–84.Google Scholar
  26. 26.
    L.B. Freund, in Mechanics of Fracture, ASME AMD-19 (1976) 105–134.Google Scholar
  27. 27.
    M.F. Kanninen and C.F. Popelar, Advanced Fracture Mechanics, Oxford University Press, New York (1985).Google Scholar
  28. 28.
    F. Nilsson, Crack Dynamics in Metallic Materials, CISM 310, Springer Verlag, New York (1990).Google Scholar
  29. 29.
    L.B. Freund, Journal of Elasticity 2 (1972) 341–439.Google Scholar
  30. 30.
    F. Nilsson, Journal of Elasticity 4 (1974) 73–75.Google Scholar
  31. 31.
    B. Moran and C.F. Shih, Engineering Fracture Mechanics 15 (1987) 615–642.Google Scholar
  32. 32.
    A.W. Maue, Zeitschrift für angewandte Mathematik und Mechanik 34 (1954) 1–12.Google Scholar
  33. 33.
    D.R.J. Owen and E. Hinton, Finite Elements in Plasticity: Theory and Practice, Pineridge Press, Swansea (1980).Google Scholar
  34. 34.
    C.H. Popelar, International Journal of Fracture 46 (1990) 185–205.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • J. C. Thesken
    • 1
  • Peter Gudmundson
    • 1
  1. 1.Royal Institute of TechnologyDepartment of Solid MechanicsStockholmSweden

Personalised recommendations