Skip to main content
Log in

The marine red alga Chondrus crispus has a highly divergent β-tubulin gene with a characteristic 5′ intron: functional and evolutionary implications

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We characterized a nuclear gene and its corresponding cDNA encoding β-tubulin (gene TubB1) of the marine red alga Chondrus crispus. The deduced TubB1 protein is the most divergent β-tubulin so far reported with only 64 to 69% amino acid identity relative to other β-tubulins from higher and lower eukaryotes. Our analysis reveals that TubB1 has an accelerated evolutionary rate probably due to a release of functional constraints in connexion with a specialization of microtubular structures in rhodophytes. It further indicates that isoform diversity and functional differentiation of tubulins in eukaryotic cells may be controlled by independent selective constraints. TubB1 has a short spliceosomal intron at its 5′ end which seems to be a characteristic feature of nuclear protein-coding genes from rhodophytes. The splice junctions of the four known rhodophyte introns comply well with the corresponding consensus sequences of higher plants in agreement with previous suggestions from phylogenetic inference that red algae and green plants may be sister groups. The paucity and asymmetrical location of introns in rhodophyte genes can be explained by differential intron loss due to conversion of genes by homologous recombination with cDNAs corresponding to reverse transcribed mRNAs or partially spliced pre-mRNAs, respectively. The identification of an intron containing TubB1 cDNA in C. crispus confirms that pre-mRNAs can escape both splicing and degradation in the nucleus prior to transport into the cytoplasm. Differential Southern hybridizations under non-stringent conditions with homologous and heterologous probes suggest that C. crispus contains a second degenerate β-tubulin gene (or pseudogene?) which, however, is only distantly related to TubB1 as it is to the more conserved homologues of other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldauf SL, Palmer JD: Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90: 11558–11562 (1993).

    PubMed  Google Scholar 

  2. Beakes GW: Oomycete fungi: their phylogeny and relationship to chromophyte algae. In: Green JC, Leadbeater BSC, Diver WL (eds) The Chromophyte Algae: Problems and Perspectives, Systematics Association Special Volume No. 38, pp. 325–342. Clarendon Press, Oxford (1989).

    Google Scholar 

  3. Bhattacharya D, Elwood HJ, Goff LJ, Sogin ML: Phylogeny of Gracilaria lemaneiformis (Rhodophyta) based on sequence analysis of its small subunit ribosomal RNA coding region. J Phycol 26: 181–186 (1990).

    Article  Google Scholar 

  4. Bhattacharya D, Stickel SK, Sogin ML: Molecular phylogenetic analysis of actin genic regions from Achlya bisexualis (Oomycota) and Costaria costata (Chromophyta). J Mol Evol 33: 525–536 (1991).

    PubMed  Google Scholar 

  5. Bond JF, Fredovich-Keil JL, Pillus L, Mulligan RC, Salomon F: A chicken-yeast chimeric beta-tubulin protein is incorporated into mouse microtubules in vivo. Cell 44: 461–468 (1986).

    Article  PubMed  Google Scholar 

  6. Bouget F-Y, Kerbourc'h C, Liaud M-F, Goër Sd, Quatrano RS, Cerff R, Kloareg G: Structural features and phylogeny of the actin gene of Chondrus crispus (Gigartinales, Rhodophyta). Curr Genet, in press (1995).

  7. Buttgereit D, Renkawitz-Pohl R: Expression of beta1 tubulin (beta Tub56D) in Drosophila testis stem cells is regulated by a short upstream sequence while intron elements guide expression in somatic cells. Mol Gen Genet 241: 263–270 (1993).

    Article  PubMed  Google Scholar 

  8. Cerff R, Martin W, Brinkmann H: Origin of introns-early or late? Nature 369: 527–528 (1994).

    Article  Google Scholar 

  9. Cleveland DW, Sullivan KF: Molecular biology and genetics of tubulin. Annu Rev Biochem 54: 331–365 (1985).

    Article  PubMed  Google Scholar 

  10. Conzelmann KK, Helftenbein E: Nucleotide sequence and expression of two beta-tubulin genes in Stylonchia lemnae. J Mol Biol 198: 643–653 (1987).

    Article  PubMed  Google Scholar 

  11. Donath M, Mendel R, Cerff R, Martin W: Introndependent transient expression of the maize GapA1 gene. Plant Mol Biol, in press (1995).

  12. Fackenthal JD, Hutchens JA, Turner FR, Raff EC: Structural analysis of mutations in the Drosophila beta-2 tubulin isoform reveals regions in the beta-tubulin molecule required for general and for tissue-specific microtubule functions. Genetics 139: 267–268 (1995).

    PubMed  Google Scholar 

  13. Feely DE, Erlandsen SL, Chase DG: Structure of the trophozoite and cyst. In: Erlandsen SL, Meyer EA (eds) Giardia and Giardiasis, pp. 3–31. Plenum Press, New York (1984).

    Google Scholar 

  14. Feinberg AP, Vogelstein B: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137: 266–267 (1984).

    PubMed  Google Scholar 

  15. Felsenstein J: Cases in which parsimony and compatibility methods will be positively misleading. System Zool 27: 401–410 (1978).

    Google Scholar 

  16. Felsenstein J: PHYLIP: Phylogeny Interference Package (version 3.2). Cladistics 5: 164–165 (1989).

    Google Scholar 

  17. Fink GR: Pseudogenes in yeast. Cell 49: 5–6 (1987).

    Article  PubMed  Google Scholar 

  18. Fulton C, Simpson PA: Selective synthesis and utilization of flagellar tubulin. The multi-tubulin hypothesis. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell Motility, pp. 987–1005. Cold Spring Harbor Press, Cold Spring Harbor, NY (1976).

    Google Scholar 

  19. Gaertig J, Thatcher TH, McGrath KE, Callahan RC, Gorovsky MA: Perspectives on tubulin isotype function and evolution based on the observation that Tetrahymena thermophila microtubules contain a single alpha and betatubulin. Cell Motil Cytoskel 25: 243–253 (1993).

    Google Scholar 

  20. Gay DA, Yen TJ, Lau JTY, Cleveland DW: Sequences that confer beta-tubulin autoregulation through modulated mRNA stability reside within Exon 1 of a beta-tubulin mRNA. Cell 50: 671–679 (1987).

    Article  PubMed  Google Scholar 

  21. Gilbert W: The exon theory of genes. Cold Spring Harbor Symp Quant Biol 52: 901–905 (1987).

    PubMed  Google Scholar 

  22. Goddard RH, Wick SM, Silflow CD, Snustad DP: Microtubule components of the plant cell cytoskeleton. Plant Physiol 104: 1–6 (1994).

    PubMed  Google Scholar 

  23. Gregerson RG, Miller SS, Petrowski M, Gantt JS, Vance CP: Genomic structure, expression and evolution of the alfalfa aspartate aminotransferase genes. Plant Mol Biol 25: 387–399 (1994).

    PubMed  Google Scholar 

  24. Gu W, Lewis SA, Cowan NJ: Generation of antisera that discriminate among mammalian alpha-tubulins: introduction of specialized isotypes into cultured cells results in their coassembly without disruption of normal microtubule function. J Cell Biol 106: 2011–2022 (1988).

    Article  PubMed  Google Scholar 

  25. Han I-S, Jongewaard I, Fosket DE: Limited expression of a diverged beta-tubulin gene during soybean (Glycine max [L.] Merr.) development. Plant Mol Biol 16: 225–234 (1991).

    PubMed  Google Scholar 

  26. He F, Peltz SW, Donahue JL, Rosbash M, Jacobson A: Stabilization and ribosome association of unspliced pre-mRNAs in a yeast upf1- mutant. Proc Nat Acad Sci USA 90: 7034–7038 (1993).

    PubMed  Google Scholar 

  27. Higgins DG, Bleasby AJ, Fuchs R: CLUSTAL V: improved software for multiple sequence alignment. CABIOS 8: 189–191 (1992).

    PubMed  Google Scholar 

  28. Jacobs CW, Adams AEM, Szaniszlo PJ, Pringle JR: Functions of microtubules in the Saccharomyces cerevisae cell cycle. J Cell Biol 107: 1409–1426 (1988).

    Article  PubMed  Google Scholar 

  29. Katagiri F, Chua N-H: Plant transcription factors: present knowledge and future challenges. Trends Genet 8: 22–27 (1992).

    Article  PubMed  Google Scholar 

  30. Kersanach R, Brinkmann H, Liaud M-F, Zhang D-X, Martin WF, Cerff R: Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature 367: 387–389 (1994).

    PubMed  Google Scholar 

  31. Krainer AR, Maniatis T: RNA splicing. In: Hames BD, Glover DM (eds) Transcription and Splicing, pp. 131–206. IRL Press, Oxford (1988).

    Google Scholar 

  32. Lake JA: Tracing origins with molecular sequences: metazoan and eukaryotic beginnings. Trends Biochem Sci 16: 46–50 (1991).

    Article  PubMed  Google Scholar 

  33. Lewis SA, Gu W, Cowan NJ: Free intermingling of mammalian beta-tubulin isotypes among functionally distinct microtubules. Cell 49: 539–548 (1987).

    Article  PubMed  Google Scholar 

  34. Liaud M-F, Brinkmann H, Cerff R: The beta-tubulin gene family of pea: primary structures, genomic organization and intron-dependent evolution of genes. Plant Mol Biol 18: 639–651 (1992).

    Article  PubMed  Google Scholar 

  35. Liaud M-F, Valentin C, Bouget F-Y, Kloareg B, Cerff R: Molecular phylogeny of red algae as revealed by nuclear genes encoding chloroplast and cytosol specific proteins. In: Sato S, Ishida M, Ishikawa H (eds) Endocytobiology V, pp. 357–361. Tübingen University Press, Tübingen (1993).

    Google Scholar 

  36. Liaud M-F, Valentin C, Brandt U, Bouget F-Y, Floareg B, Cerff R: The GAPDH gene system of the red alga Chondrus crisus: promotor structures, intron/exon organization, genomic complexity and differential expression of genes. Plant Mol Biol 23: 981–994 (1993).

    PubMed  Google Scholar 

  37. Liaud M-F, Valentin C, Martin W, Bouget F-Y, Kloareg B, Cerff R: The evolutionary origin of red algae as deduced from the nuclear genes enconding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases from Chondrus crispus. J Mol Evol 38: 319–327 (1994).

    PubMed  Google Scholar 

  38. Liaud M-F, Zhang DX, Cerff R: Differential intron loss and endosymbiontic transfer of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes to the nucleus. Proc Natl Acad Sci USA 87: 8918–8922 (1990).

    PubMed  Google Scholar 

  39. Ludueña RF: Are tubulin isotypes functionally significant. Mol Biol Cell 4: 445–457 (1993).

    PubMed  Google Scholar 

  40. MacKay RM, Gallant JW: Beta-tubulins are encoded by at least four genes in the brown alga Ectocarpus variabilis. Plant Mol Biol 17: 487–492 (1991).

    PubMed  Google Scholar 

  41. MacRae TH, Langdon CM: Tubulin synthesis, structure and function: what are the relationships? Biochem Cell Biol 67: 770–790 (1989).

    PubMed  Google Scholar 

  42. Marchionni M, Gilbert W: The triosephosphate isomerase gene from maize: introns antedate the plantanimal divergence. Cell 46: 133–141 (1986).

    Article  PubMed  Google Scholar 

  43. Martin W, Brinkmann H, Savona C, Cerff R: Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 90: 8692–8696 (1993).

    PubMed  Google Scholar 

  44. Martinez P, Martin W, Cerff R: Structure, evolution and anaerobic regulation of a nuclear gene encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Biol 208: 551–565 (1989).

    PubMed  Google Scholar 

  45. Nagel SD, Boothroyd JC: The alpha- and beta-tubulins of toxoplasma gondii are encoded by single copy genes containing multiple introns. Mol Biochem Parasitol 29: 261–273 (1988).

    Article  PubMed  Google Scholar 

  46. Panaccione DG, Hanau RM: Characterization of two divergent beta-tubulin genes from Colletotrichum graminicola. Gene 86: 163–170 (1990).

    Article  PubMed  Google Scholar 

  47. Paul ECA, Buchschacher GL, Cunningham DB, Dove WF, Burland TG: Preferential expression of one beta-tubulin gene during flagellate development in Physarum. J Gen Microbiol 138: 229–238 (1992).

    PubMed  Google Scholar 

  48. Perasso R, Baroin A, Qu LH, Bachallerie JP, Adouette A: Origin of the algae. Nature 339: 142–144 (1989).

    Article  PubMed  Google Scholar 

  49. Pringle JR, Lillie SH, Adams AEM, Jacobs CW, Haarer BK, Cloeman KG, Robinson JS, Bloom L, Preston RA: Cellular morphogenesis in the yeast cell cycle. In: Hicks J (eds) Yeast Cell Biology, pp. 47–80. Alan R. Liss, New York (1986).

    Google Scholar 

  50. Quigley F, Brinkmann H, Martin WF, Cerff R: Strong functional GC pressure in light-regulated maize gene encoding subunit GapA of chloroplast glyceraldehyde-3-phosohate dehydrogenase: implications for the evolution of GapA pseudogenes. J Mol Evol 29: 412–421 (1989).

    PubMed  Google Scholar 

  51. Quigley F, Martin WF, Cerff R: Intron conservation across the prokaryote-eukaryote boundary: structure of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. Proc Natl Acad Sci USA 85: 2672–2676 (1988).

    PubMed  Google Scholar 

  52. Raff EC, Diaz HB, Hoyle HD, Hutchens JA, Kimble M, Raff RA, Rudolph JE, Subler MA: Origin of multiple gene families: are there both functional and regulatory constraints? In: Raff RA, Raff EC (eds) Development as an Evolutionary Process, pp. 203–238. Alan R. Liss, New York (1987).

    Google Scholar 

  53. Rawlings DJ, Fujioka H, Fried M, Keister DB, Aikawa M, Kaslow DC: Alpha-tubulin II is a male-specific protein in Plasmodium falciparum. Mol Biochem Parasitol 56: 239–250 (1992).

    Article  PubMed  Google Scholar 

  54. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 (1987).

    PubMed  Google Scholar 

  55. Scott J, Broadwater S: Cell division. In: Cole KM, Sheath RG (eds) Biology of the Red Algae, pp. 123–145. Cambridge University Press, Cambridge (1990).

    Google Scholar 

  56. Shih M-C, Heinrich P, Goodman HM: Intron existence predated the divergence of eukaryotes and prokaryotes. Science 242: 1164–1166 (1988).

    PubMed  Google Scholar 

  57. Sinibaldi RM, Mettler IJ: Intron splicing and intronmediated enhanced expression in monocots. Prog Nucl Acid Res Mol Biol 42: 229–257 (1992).

    Google Scholar 

  58. Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA: Phylogenetic meaning of the kingdom concept: an unusual rRNA from Giardia lamblia. Science 243: 75–77 (1989).

    PubMed  Google Scholar 

  59. Theodorakis NG, Cleveland DW: Physical evidence for cotranslational regulation of beta-tubulin mRNA degradation. Mol Cell Biol 12: 791–799 (1992).

    PubMed  Google Scholar 

  60. Walne PL, Kivic PA: Phylum Euglenida. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ, McKhann HI (eds) Handbook of Protoctista, pp. 270–287. Jones and Bartlett, Boston (1989).

    Google Scholar 

  61. Wang D, Villasante A, Lewis SA, Cowan NJ: The mammalian beta-tubulin repertoire: Hematopoietic expression of a novel, heterologous beta-tubulin isotype. J Cell Biol 103: 1903–1910 (1986).

    Article  PubMed  Google Scholar 

  62. Youngblom J, Schloss JA, Silflow CD: The two beta-tubulin genes of Chlamydomonas reinhardtii code for identical proteins. Mol Cell Biol 4: 2686–1696 (1984).

    PubMed  Google Scholar 

  63. Zhou Y-H, Ragan MA: cDNA cloning and characterization of the nuclear gene encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa. Curr Genet 23: 483–489 (1993).

    Article  PubMed  Google Scholar 

  64. Zhou Y-H, Ragan MA: Cloning and characterization of the nuclear gene encoding glyceraldehyde-3-phosphate dehydrogenase from the marine red alga Gracilaria verrucosa. Curr Genet 26: 79–86 (1994).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liaud, MF., Brandt, U. & Cerff, R. The marine red alga Chondrus crispus has a highly divergent β-tubulin gene with a characteristic 5′ intron: functional and evolutionary implications. Plant Mol Biol 28, 313–325 (1995). https://doi.org/10.1007/BF00020250

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020250

Key words

Navigation