Skip to main content
Log in

Existence of two ferredoxin-glutamate synthases in the cyanobacterium Synechocystis sp. PCC 6803. Isolation and insertional inactivation of gltB and gltS genes

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The first two genes of ferredoxin-dependent glutamate synthase (Fd-GOGAT) from a prokaryotic organism, the cyanobacterium Synechocystis sp. PCC 6803, were cloned in Escherichia coli. Partial sequencing of the cloned genomic DNA, of the 6.3 kb Hind III and 9.3 kb Cla I fragments, confirmed the existence of two different genes coding for glutamate synthases, named gltB and gltS. The gltB gene was completely sequenced and encodes for a polypeptide of 1550 amino acid residues (M r 168 964). Comparative analysis of the gltB deduced amino acid sequence against other glutamate synthases shows a higher identity with the alfalfa NADH-GOGAT (55.2%) than with the corresponding Fd-GOGAT from the higher plants maize and spinach (about 43%), the red alga Antithamnnion sp. (42%) or with the NADPH-GOGAT of bacterial source, such as Escherichia coli (41%) and Azospirillum brasilense (45%). The detailed analysis of Synechocystis gltB deduced amino acid sequence shows strongly conserved regions that have been assigned to the 3Fe-4S cluster (CX5CHX3C), the FMN-binding domain and the glutamine-amide transferase domain. Insertional inactivation of gltB and gltS genes revealed that both genes code for ferredoxin-dependent glutamate synthases which were nonessential for Synechocystis growth, as shown by the ferredoxin-dependent glutamate synthase activity and western-blot analysis of the mutant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson MP, Vance CP, Heichel GH, Miller SS: Purification and characterization of NADH-glutamate synthase from alfalfa root nodules. Plant Physiol 90: 351–358 (1989).

    Google Scholar 

  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology. Greene Publishing/Wiley-Interscience, New York (1992).

    Google Scholar 

  3. Avila C, Botella JR, Cánovas FM, Núñez de Castro I, Valpuesta V: Different characteristics of the two glutamate synthases in the green leaves of Lycopersicon esculentum. Plant Physiol 85: 1036–1039 (1987).

    Google Scholar 

  4. Avila C, Márquez AJ, Pajuelo P, Cannell ME, Wallsgrove RM, Forde BG: Cloning and sequence analysis of a cDNA for barley ferredoxin-dependent glutamate synthase and molecular analysis of photorespiratory mutants deficient in the enzyme. Planta 189: 475–483 (1993).

    Article  PubMed  Google Scholar 

  5. Benny AG, Boland MJ: Enzymes of nitrogen metabolism in legume nodules. Purification and properties of NADH-dependent glutamate synthase from lupin nodules. Eur J Biochem 79: 355–362 (1977).

    PubMed  Google Scholar 

  6. Botella JR, Verbelen JP, Valpuesta V: Immunocytolocalization of ferredoxin-GOGAT in cells of green leaves and cotyledons of Lycopersicon esculentum: Plant Physiol 87: 255–257 (1988).

    Google Scholar 

  7. Boyer HW, Roulland-Dussoix D: A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41: 459–472 (1969).

    Article  PubMed  Google Scholar 

  8. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254 (1979).

    Article  Google Scholar 

  9. Cai Y, Wolk CP: Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bact 172: 3138–3145 (1990).

    PubMed  Google Scholar 

  10. Chapman SK, White SA, Reid GA: Flavocytochrome b2. Adv Inorg Chem 36: 257–301 (1991).

    Google Scholar 

  11. Chauvat F, deVries L, van derEnde A, vanArkel GA: A host-vector system for gene cloning in the cyanobacterium Synechocystis PCC 6803. Mol Gen Genet 204: 185–191 (1986).

    Article  Google Scholar 

  12. Chávez S: Glutamate dehydrogenase in cyanobacteria. Ph. D. thesis, University of Sevilla (1992).

  13. Chen FL, Cullimore JV: Two isoenzymes of NADH-dependent glutamate synthase in root nodules of Phaseolus vulgaris. Plant Physiol 88: 1411–1417 (1988).

    Google Scholar 

  14. Chen FL, Cullimore JV: Localization of two isoenzymes of NADH-dependent glutamate synthase in root nodules of Phaseolus vulgaris. Planta 179: 441–447 (1989).

    Google Scholar 

  15. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).

    PubMed  Google Scholar 

  16. Elhai J, Wolk CP: A versatile class of positive-selection vectors based on the nonviability of palindrome containing plasmids that allows cloning into long polylinkers. Gene 68: 119–138 (1988).

    Article  PubMed  Google Scholar 

  17. Florencio FJ, Marqués S, Candau P: Identification and characterization of glutamate dehydrogenase in the unicellular cyanobacterium Synechocystis PCC 6803. FEBS Lett 223: 37–41 (1987).

    Article  Google Scholar 

  18. Galván F, Márquez AJ, Vega JM: Purification and molecular properties of ferredoxin-glutamate synthase from Chlamydomonas reinhardtii. Planta 162: 180–187 (1984).

    Google Scholar 

  19. Gregerson RG, Miller SS, Twary SN, Gantt JS, Vance CP: Molecular characterization of NADH-dependent glutamate synthase from alfalfa nodules. Plant Cell 5: 215–226 (1993).

    Article  PubMed  Google Scholar 

  20. Hayakawa T, Yamaya T, Kamachi K, Ojima K: Purification, characterization, and immunological properties of NADH-dependent glutamate synthase from rice cell cultures. Plant Physiol 98: 1317–1322 (1992).

    Google Scholar 

  21. Hemmilä IA, Mäntsälä PI: Purification and properties of glutamate synthase and glutamate dehydrogenase from Bacillus megaterium. Biochem J 173: 45–52 (1978).

    PubMed  Google Scholar 

  22. Hirasawa M, Knaff DB: Ferredoxin-dependent chloroplast enzymes. Biochim Biophys Acta 1056: 93–125 (1991).

    PubMed  Google Scholar 

  23. Hirasawa M, Robertson DE, Ameyibor E, Johnson MK, Knaff DB: Oxidation-reduction properties of the ferredoxin-linked glutamate synthase from spinach leaf. Biochim Biophys Acta 1100: 105–108 (1992).

    PubMed  Google Scholar 

  24. Igeño MI, Caballero FJ, Castillo F: Molecular and kinetic characterization of glutamate synthase from the phototrophic bacterium Rhodobacter capsulatus E1F1. J Gen Microbiol 139: 2921–2929 (1993).

    Google Scholar 

  25. Johnson MK, Kowal AT, Morningstar JE, Oliver ME, Whittaker K, Gunsalus RP, Ackerll BAC, Cecchini G: Subunit location of the iron sulfur clusters in fumarate reductase from Escherichia coli. J Biol Chem 263: 14732–14738 (1989).

    Google Scholar 

  26. Karplus PA, Daniels MJ, Herriott JR: Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251: 60–66 (1991).

    PubMed  Google Scholar 

  27. Knaff DB, Hirasawa M, Ameyibor E, Fu W, Johnson MK: Spectroscopic evidence for a [3Fe-4S] cluster in spinach glutamate synthase. J Biol Chem 266: 15080–15084 (1991).

    PubMed  Google Scholar 

  28. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).

    PubMed  Google Scholar 

  29. Lea PJ, Miflin BJ: Alternative route for nitrogen assimilation in higher plants. Nature 251: 614–616 (1974).

    PubMed  Google Scholar 

  30. Manodori A, Cecchini G, Schroder I, Gunsalus RP, Werth MT, Johson MK: [3Fe-4S] to [4Fe-4S] cluster conversion in Escherichia coli fumarate reductase by site-directed mutagenesis. Biochemistry 31: 2703–2712 (1992).

    PubMed  Google Scholar 

  31. Marqués S, Florencio FJ, and Candau P: Purification and characterization of the ferredoxin-glutamate synthase from the unicellular cyanobacterium Synechococcus sp. PCC 6301. Eur J Biochem 206: 69–77 (1992).

    PubMed  Google Scholar 

  32. Márquez AJ, Galván F, Vega JM: Purification and characterization of the NADH-glutamate synthase from Chlamydomonas reinhardtii. Plant Sci Lett 34: 305–314 (1984).

    Google Scholar 

  33. Mei B, Zalkin H: A cysteine-histidine-aspartate catalytic triad is involved in glutamine amide transfer function in purF-type glutamine amidotransferases. J Biol Chem 264: 16613–16619 (1989).

    PubMed  Google Scholar 

  34. Mei B, Zalkin H: Amino-terminal deletions define a glutamine amide transfer domain in glutamine phosphoribosylpyrophosphate amidotransferase and other purF-type amidotransferases. J Bact 172: 3512–3514 (1990).

    PubMed  Google Scholar 

  35. Mérida A, Flores E, Florencio FJ: Regulation of Anabaena sp. strain 7120 glutamine synthetase activity in a Synechocystis sp. strain PCC 6803 derivative strain bearing the Anabaena glnA gene and a mutated host glnA gene. J Bact 174: 6550–6554 (1992).

    Google Scholar 

  36. Miflin BJ, Lea PJ: Ammonia assimilation. In: Miflin BJ (ed) The Biochemistry of Plants, vol. 5, pp. 169–202. Academic Press, New York/London, (1980).

    Google Scholar 

  37. Miller RE, Stadtman ER: Glutamate synthase from Escherichia coli. J Biol Chem 247: 7407–7419 (1972).

    PubMed  Google Scholar 

  38. Nalbantoglu B, Hirasawa M, Moomaw C, Nguyen H, Knaff DB, Allen R: Cloning and sequencing of the gene encoding spinach ferredoxin-dependent glutamate synthase. Biochim Biophys Acta 1183: 557–561 (1994).

    PubMed  Google Scholar 

  39. Needleman SB, Wunsch CD: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48: 443–453 (1970).

    PubMed  Google Scholar 

  40. Oliver G, Gosset G, Sánchez-Pescador R, Lozoya E, Ku LM, Flores N, Becerril B, Valle F, Bolivar F: Determination of the nucleotide sequence for the glutamate synthase structural genes of Escherichia coli K-12. Gene 60: 1–11 (1987).

    Article  PubMed  Google Scholar 

  41. Pearson WR, Lipman DJ: Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448 (1988).

    PubMed  Google Scholar 

  42. Pelanda R, Vanoni MA, Perego M, Piubelli L, Galizzi A, Curti B, Zanetti G: Glutamate synthase genes of the diazotroph Azospirillum brasilense. J Biol Chem 268: 3099–3106 (1993).

    PubMed  Google Scholar 

  43. Reith M, Munholland J: A high resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5: 465–475 (1993).

    Article  PubMed  Google Scholar 

  44. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stainer RY: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61 (1979).

    Google Scholar 

  45. Sakakibara H, Watanabe M, Hase T, Sugiyama T: Molecular cloning and characterization of complementary DNA encoding for ferredoxin-dependent glutamate synthase in maize leaf. J Biol Chem 266: 2028–2035 (1991).

    PubMed  Google Scholar 

  46. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, NY (1989).

    Google Scholar 

  47. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  48. Suzuki A, Gadal P: Glutamate synthase from rice leaves. Plant Physiol 69: 848–852 (1982).

    Google Scholar 

  49. Suzuki A, Gadal P: Glutamate synthase: physicochemical and functional properties of different forms in higher plants and other organisms. Physiol Vég 22: 471–486 (1984).

    Google Scholar 

  50. Suzuki A, Oaks A, Jacquot JP, Vidal J, Gadal P: An electron transport system in maize roots for reactions of glutamate synthase and nitrite reductase. Physiological and immunological properties of the electron carrier and pyridine nucleotide reductase. Plant Physiol 78: 374–378 (1984).

    Google Scholar 

  51. Trotta PP, Platzer KEB, Haschemeyer RH, Meister A: Glutamine binding subunits of glutamate synthase and partial reactions catalyzed by this glutamine amidotransferase. Proc Natl Acad Sci USA 71: 4607–4611 (1974).

    PubMed  Google Scholar 

  52. Valentin K, Kostzewa M, Zetsche K: Glutamate synthase is plastid-encoded in a red alga: implications for the evolution of glutamate synthases. Plant Mol Biol 23: 77–85 (1993).

    PubMed  Google Scholar 

  53. Vanoni MA, Accornero P, Carrera G, Curti B: The pH-dependent behavior of catalytic activities of Azospirillum brasilense glutamate synthase and iodoacetamide modification of the enzyme provide evidence for a catalytic Cys-His ion pair. Arch Biochem Biophys 309: 222–230 (1994).

    Article  PubMed  Google Scholar 

  54. Vanoni MA, Curti B, Zanetti G: Glutamate synthase. In: Muller F (ed) Chemistry and Biochemistry of Flayoproteins, vol III, pp. 309–317, Walter De Gruyter, Berlin (1991).

    Google Scholar 

  55. Wierenga RK, DeMaeyer MCH, Hol WGJ: Interaction of pyrophosphate moieties with α-helixes in dinucleotide binding protein. Biochemistry 24: 1346–1357 (1985).

    Google Scholar 

  56. Zehnacker C, Becker TW, Suzuki A, Carrayol E, Caboche M, Hirel B: Purification and properties of tobacco ferredoxin-depenent glutamate synthase, and isolation of corresponding cDNA clones. Light-inducibility and organ-specificity of gene transcription. Planta 187: 266–274 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro, F., Chávez, S., Candau, P. et al. Existence of two ferredoxin-glutamate synthases in the cyanobacterium Synechocystis sp. PCC 6803. Isolation and insertional inactivation of gltB and gltS genes. Plant Mol Biol 27, 753–767 (1995). https://doi.org/10.1007/BF00020228

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020228

Key words

Navigation