, Volume 242, Issue 3, pp 149–154 | Cite as

Influence of salinity on the rates of oxygen consumption in two species of freshwater fishes, Phoxinus erythrogaster (family Cyprinidae), and Fundulus catenatus (family Fundulidae)

  • Conrad Toepfer
  • Michael Barton


A dye process in a textile plant in southern Kentucky (USA) produces large quantities of saline waste-water which eventually enter Lake Cumberland via a municipal sewage treatment plant on Lily Creek. The impact of hypersaline conditions on two fish species native to the Cumberland River drainage system, redbelly dace (Phoxinus erythrogaster) and northern studfish (Fundulus catenatus), was assessed. These species were subjected to salinities of 0, 4, and 10‰ after which routine oxygen consumtpion values were determined. Significant correlations of salinity with oxygen consumption were demonstrated for both species with P. erythrogaster showing greater overall impact of salinity on metabolic rate.

Key words

salinity pollution Fundulus catenatus Phoxinus erythrogaster oxygen consumption tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahokas, R. A. & F. G. Duerr, 1975. Salinity tolerance and extracellular osmoregulation in two species of euryhaline teleosts, Culuea inconstans and Fundulus diaphanus. Comp. Biochem. Physiol. 52A: 445–448.Google Scholar
  2. Al-Daham, N. K. & M. N. Bhatti, 1977. Salinity tolerance of Gambusia affinis (Baird & Girard) and Heteropneustes fossilis (Bloch). J. Fish Biol. 11: 309–313.Google Scholar
  3. Barton, M. G. & A. C. Barton, 1987. Effects of salinity on oxygen consumption of Cyprinodon variegatus. Copeia 1987: 230–232.Google Scholar
  4. Barton, M. G. & K. Elkins, 1988. Significance of aquatic surface respiration in the comparative adaptation of two species of fishes (Notropis chrysocephalus and Fundulus catenatus) to headwater environments. Trans. Ky Acad. Sci. 49: 69–73.Google Scholar
  5. Bayly, I. A. E., 1972. Salinity tolerance and osmotic behavior of animals in athalassic saline and marine hypersaline waters. Ann. Rev. Ecol. Syst. 3: 233–268.Google Scholar
  6. Berra, T. M., 1981. An atlas of distribution of the freshwater fish families of the world. Univ. Nebraska Press, Lincoln, NB, p. xxi.Google Scholar
  7. Chervinski, J., 1977. Note on the adaptability of silver carp (Hypothalmichthys molitrix) and grass carp (Ctenopharyngodon idella) to various saline concentrations. Aquacult. 11: 174–182.Google Scholar
  8. Chervinski, J., 1984. Salinity tolerance of the guppy, Poecilia reticulata Peters. J. Fish Biol. 24: 449–452.Google Scholar
  9. Clemens, H. P. & W. H. Jones, 1954. Toxicity of brine water from oil wells. Trans. am. Fish. Soc. 84: 97–109.Google Scholar
  10. Commonwealth of Kentucky, 1989. Draft permit no. KY0062995: pollutant discharge elimination system.Google Scholar
  11. Duff, D. W. & W. R. Fleming, 1972. Sodium metabolism of the freshwater cyprinodont Fundulus catenatus. J. Comp. Physiol. 80: 179–189.Google Scholar
  12. Dyer, S. D., J. R. Coats, S. P. Bradbury, G. J. Atchison & J. M. Clark, 1989. Effects of water hardness and salinity on the acute toxicity and uptake of fenvalerate by bluegill (Lepomis macrochirus). Bull. envir. Contam. Toxicol. 42: 359–366.Google Scholar
  13. Echelle, A. A., A. F. Echelle & L. G. Hill, 1972. Interspecific interactions and limiting factors of abundance and distribution in the Red River pupfish, Cyprinodon rubrofluvialitis. Am. Midl. Nat. 88: 109–130.Google Scholar
  14. Frain, W. J., 1987. The effect of external sodium and calcium concentration on sodium fluxes by salt depleted and non-depleted minnows, Phoxinus (L.). J. exp. Biol. 131: 417–425.Google Scholar
  15. Hart, B. T., P. Bailey, R. Edwards, K. Hortle, K. James, A. McMahon, C. Meredith & K. Swadling, 1990. Effects of salinity on river, stream and wetland ecosystems in Victoria, Australia. Wat. Res. 24: 1103–1117.Google Scholar
  16. Held, J. W. & J. J. Peterka, 1974. Age, growth, and food habits of the fathead minnow, Pimephales promelas, in North Dakota saline lakes. Trans. am. Fish. Soc. 103: 743–756.Google Scholar
  17. Igram, R. & W. D. Wares, 1979. Oxygen consumption in the fathead minnow (Pimephales promelas Rafinesque) of pH, osmotic pressure, and light level. Comp. Biochem. Physiol. 62A: 895–897.Google Scholar
  18. Kilambi, R. V. & A. Zdinak, 1980. The effects of acclimation on the salinity tolerance of grass carp, Ctenopharyngodon idella (Cuv. & Val.). J. Fish Biol. 16: 171–175.Google Scholar
  19. Kinne, O., 1960. Growth, food intake, and food conversion in an euryplastic fish exposed to different temperatures and salinities. Physiol. Zool. 33: 228–317.Google Scholar
  20. Kraiem, M. M. & E. Pattee, 1988. Salinity tolerance of the barbel, Barbus callensis Valenciennes, 1842 (Pisces: Cyprinidae) and its ecological significance. Hydrobiologia 166: 263–267.Google Scholar
  21. Maceina, M. J., F. G. Nordlie & J. V. Shireman, 1980. The influence of salinity on oxygen consumption and plasma electrolytes in grass carp, Ctenopharyngodon idella Val. J. Fish Biol. 16: 613–619.Google Scholar
  22. Matthews, W. J. & L. G. Hill, 1977. Tolerance of the red shiner, Notropis lutrensis (Cyprinidae) to environmental parameters. Southwest Nat. 22: 89–98.Google Scholar
  23. Montgomery, R., 1985. Salty minnows. Southern Outdoors 33: 20.Google Scholar
  24. Naiman, R. J. & D. L. Stoltz, 1981. Fishes in North American deserts. J. Wiley & Sons Inc., New York, NY, 552 pp.Google Scholar
  25. Nelson, J. S., 1968. Salinity tolerance of brook sticklebacks, Culaea inconstans, freshwater ninespine sticklebacks, Pungitus pungitus, and freshwater fourspine sticklebacks, Apletes quadracus. Can. J. Zool. 46: 663–667.Google Scholar
  26. Peterson, M. S., 1988. Comparative physiological ecology of centrarchids in hyposaline environments. Can. J. Fish. aquat. Sci. 45: 827–833.Google Scholar
  27. Prosser, C. L., 1973. Comparative Animal Physiology, 3rd edn. Saunders, Philadelphia, 966 pp.Google Scholar
  28. Shipley, F. S., 1991. Oil field-produced brines in a coastal stream: Water quality and fish community recovery following long term impacts. Tex. J. Sci. 43: 51–64.Google Scholar
  29. Stickney, R. R., 1986. Tilapia tolerance of saline waters: a review. Prog. Fish Cult. 48: 161–167.Google Scholar
  30. Stuenkel, E. L. & S. D. Hillyard, 1981. The effects of temperature and salinity acclimation on metabolic rate and osmoregulation in the pupfish, Cyprinodon salinus. Copeia 1981: 411–417.Google Scholar
  31. Vigg, S., 1982. Temperature and salinity relationships of the Nevadan relict dace. Great Basin Nat. 42: 541–548.Google Scholar
  32. Walker, R. L., P. R. H. Wilkes & C. M. Wood, 1989. The effects of hypersaline exposure on oxygen-affinity of the blood of the freshwater teleost Catostomus commersoni. J. exp. Biol. 142: 125–142.Google Scholar
  33. Wilkes, P. R. H. & B. R. McMahon, 1986a. Responses of a stenohaline freshwater teleost (Catostomus commersoni) to hypersaline exposure I. The dependence of plasma pH and bicarbonate concentration on electrolyte regulation. J. exp. Biol. 121: 77–94.Google Scholar
  34. Wilkes, P. R. H. & B. R. McMahon, 1986b. Responses of a stenohaline freshwater teleost (Catostomus commersoni) to hypersaline exposure II. Transepithelial flux of sodium, chloride, and acidic equivalents. J. exp. Biol. 121: 95–113.Google Scholar
  35. Williams, M. D. & W. D. Williams, 1991. Salinity tolerances of four species of fish from the Murray-Darling River system. Hydrobiologia 210: 145–160.Google Scholar
  36. Williams, W. D., R. G. Taaffe & A. J. Boulton, 1991. Longitudinal distribution of macroinvertebrates in two rivers subject to salinization. Hydrobiologia 210: 151–160.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Conrad Toepfer
    • 1
  • Michael Barton
    • 2
  1. 1.Department of ZoologyLouisiana State UniversityBaton RougeUSA
  2. 2.Division of Science and MathematicsCentre CollegeDanvilleUSA

Personalised recommendations