Skip to main content
Log in

Mixed-mode fracture of composites using Iosipescu shear test

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Finite element analysis is used to determine the influence of elastic properties on the stress distribution in the Iosipescu shear test specimen. Two different boundary conditions are used which assume either the application of force couples or specified displacements. The effect of orthotropy ratio is investigated with E 11/E 22ranging from 1 to 14.2. The analysis is extended to partially cracked specimens and used to calculate the basic fracture parameters in aligned composite materials. In particular, the failure of specimens with two axial splits, nucleated at the roots of the notches, and extended in the fibre direction is analysed. It is shown that the stress distribution is strongly dependent on both the elastic properties and boundary conditions. The mixed mode stress intensity factors K Iand K IIat the crack tips tend to increase with orthotropy ratio. The analysis is discussed with respect to the limited experimental data available for this test geometry. From the numerical and experimental results the mixed mode toughness is estimated in terms of the critical stress intensity factors and the critical energy release rate.

Résumé

On recourt à une analyse par éléments finis pour déterminer l'influence des propriétés élastiques du matériau sur la distribution des contraintes dans l'éprouvette de l'essai de cisaillement de Iosipescu. Deux conditions aux limites sont considérées: l'application de couples de forces ou de déplacements imposés. L'effet du rapport d'orthotropie est étudié, pour des valeurs de E 11/E 22comprises entre 1 et 14,2. L'analyse est étendue au cas d'éprouvettes partiellement fissurées, et est utilisée pour le calcul des paramètres fondamentaux de rupture dans des matériaux composites à fibres alignées. On analyse en particulier la rupture d'éprouvette comportant deux séparations axiales, prenant naissance aux racines ds entailles et s'étendant dans la direction de la fibrosité.

On montre que la distribution des containtes dépend fortement des propriétés élastiques du matériaux et des conditions aux limites. Les facteurs d'intensité de contrainte correspondant au mode mixte K Iet K IIde rupture aux extrémités de la fissure tendant à croître avec le rapport d'orthotropie.

Une discussion sur cette analyse tient compte du nombre limité de données expérimentales disponibles pour cette géométrie d'éprouvettes. On peut estimer la ténacité sous mode mixte à partir des résultats numériques et expérimentaux, et l'exprimer par les facteurs critiques d'intensité de contraintes et la vitesse critique de relaxation de l'énergie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J.G. Williams and M.W. Birch, Cracks and Fracture, ASTM STP 601, American Society for Testing and Materials (1976) 125–137.

  2. J. Tirosh, Engineering Fracture Mechanics 13 (1980) 119–127.

    Google Scholar 

  3. I.M. Daniel, Experimental Mechanics 25 (1985) 413–420.

    Google Scholar 

  4. J.G. Williams and P.D. Ewing, International Journal of Fracture Mechanics 8 (1972) 441–446.

    Google Scholar 

  5. N. Iosipescu, Journal of Materials 2 (1967) 537–566.

    Google Scholar 

  6. S.S. Wang, D.P. Goetz and H.T. Corten, International Journal of Fracture 26 (1984) 215–227.

    Google Scholar 

  7. J.L. Sullivan, B.G. Kao and H.Van Oene, Experimental Mechanics 24 (1984) 223–232.

    Google Scholar 

  8. D.F. Adams and D.E. Walrath, Composite Materials: Testing and Design, ASTM STP 787, I.M. Daniel (ed.) (1982) 19–33.

  9. D.E. Walrath and D.F. Adams, Experimental Mechanics 23 (1983) 105–110.

    Google Scholar 

  10. D.E. Walrath and D.F. Adams, Analysis of the Stress State in an Iosipescu Shear Test Specimen UWME-DR-301-102-1, University of Wyoming Composite Materials Research Group Report to NASA-Langley Research Centre (June 1983).

  11. D.E. Walrath and D.F. Adams, Verification and Application of the Iosipescu Shear Test Method UWME-DR-401-103-1, University of Wyoming Composite Materials Research Group Report to NASA-Langley Research Centre (June 1984).

  12. C.T. Herakowich and H.W. Bergner, Composites 11 (1980) 149–154.

    Article  Google Scholar 

  13. S.R. Swanson, M. Messick and G.R. Toombes, Composites 16 (1985) 220–224.

    Article  Google Scholar 

  14. J.A. Barnes, M. Kumosa and D. Hull, Composite Science and Technology 28 (1987) 251–268.

    Article  Google Scholar 

  15. R.S. Barsoum, International Journal of Numerical Methods in Engineering 11 (1977) 85–98.

    Google Scholar 

  16. Data Preparation, User Manual Level 6.1, PAFEC Ltd, Nottingham (1986).

  17. H.T. Corten, in Fracture, An Advanced Treatise, Liebowitz (ed.), Vol. 7 (1972) 675–769.

  18. G.C. Sih, P.C. Paris and G.R. Irwin, International Journal of Fracture Mechanics 1 (1965) 189–203.

    Article  Google Scholar 

  19. S.L. Pu, M.A. Hussain and W.E. Lorensen, International Journal of Numerical Methods in Engineering 12 (1978) 1727–1742.

    Google Scholar 

  20. B. Spencer and J.T. Barnby, Journal of Materials Science 11 (1976) 83–88.

    Google Scholar 

  21. E.M. Wu, ASME Journal of Applied Mechanics 34 (1967) 967–974.

    Google Scholar 

  22. A.S. Wang, N.N. Kishore and W.W. Feng, in Progress in Science and Engineering of Composites, T. Hayashi, K. Kawata and S. Umekawa, (eds) ICCM-IV, Tokyo (1982) 599–606.

  23. R. Keal, PhD thesis, University of Liverpool (1982).

  24. C.H. Gatward, P.J. Hogg and D. Hull, Deformation, Yield and Fracture of Polymers, Sixth International Conference, April 1985, Churchill College, Cambridge, U.K. (1985).

  25. D. Hull, An Introduction to Composite Materials, Cambridge University Press (1981).

  26. A.J. Russell and K.N. Street in Delamination and Debonding of Materials, ASTM STP 876, W.S. Johnson (ed.), American Society for Testing and Materials (1985) 349–370.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumosa, M., Hull, D. Mixed-mode fracture of composites using Iosipescu shear test. Int J Fract 35, 83–102 (1987). https://doi.org/10.1007/BF00019793

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019793

Keywords

Navigation