Abstract
Finite element analysis is used to determine the influence of elastic properties on the stress distribution in the Iosipescu shear test specimen. Two different boundary conditions are used which assume either the application of force couples or specified displacements. The effect of orthotropy ratio is investigated with E 11/E 22ranging from 1 to 14.2. The analysis is extended to partially cracked specimens and used to calculate the basic fracture parameters in aligned composite materials. In particular, the failure of specimens with two axial splits, nucleated at the roots of the notches, and extended in the fibre direction is analysed. It is shown that the stress distribution is strongly dependent on both the elastic properties and boundary conditions. The mixed mode stress intensity factors K Iand K IIat the crack tips tend to increase with orthotropy ratio. The analysis is discussed with respect to the limited experimental data available for this test geometry. From the numerical and experimental results the mixed mode toughness is estimated in terms of the critical stress intensity factors and the critical energy release rate.
Résumé
On recourt à une analyse par éléments finis pour déterminer l'influence des propriétés élastiques du matériau sur la distribution des contraintes dans l'éprouvette de l'essai de cisaillement de Iosipescu. Deux conditions aux limites sont considérées: l'application de couples de forces ou de déplacements imposés. L'effet du rapport d'orthotropie est étudié, pour des valeurs de E 11/E 22comprises entre 1 et 14,2. L'analyse est étendue au cas d'éprouvettes partiellement fissurées, et est utilisée pour le calcul des paramètres fondamentaux de rupture dans des matériaux composites à fibres alignées. On analyse en particulier la rupture d'éprouvette comportant deux séparations axiales, prenant naissance aux racines ds entailles et s'étendant dans la direction de la fibrosité.
On montre que la distribution des containtes dépend fortement des propriétés élastiques du matériaux et des conditions aux limites. Les facteurs d'intensité de contrainte correspondant au mode mixte K Iet K IIde rupture aux extrémités de la fissure tendant à croître avec le rapport d'orthotropie.
Une discussion sur cette analyse tient compte du nombre limité de données expérimentales disponibles pour cette géométrie d'éprouvettes. On peut estimer la ténacité sous mode mixte à partir des résultats numériques et expérimentaux, et l'exprimer par les facteurs critiques d'intensité de contraintes et la vitesse critique de relaxation de l'énergie.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
J.G. Williams and M.W. Birch, Cracks and Fracture, ASTM STP 601, American Society for Testing and Materials (1976) 125–137.
J. Tirosh, Engineering Fracture Mechanics 13 (1980) 119–127.
I.M. Daniel, Experimental Mechanics 25 (1985) 413–420.
J.G. Williams and P.D. Ewing, International Journal of Fracture Mechanics 8 (1972) 441–446.
N. Iosipescu, Journal of Materials 2 (1967) 537–566.
S.S. Wang, D.P. Goetz and H.T. Corten, International Journal of Fracture 26 (1984) 215–227.
J.L. Sullivan, B.G. Kao and H.Van Oene, Experimental Mechanics 24 (1984) 223–232.
D.F. Adams and D.E. Walrath, Composite Materials: Testing and Design, ASTM STP 787, I.M. Daniel (ed.) (1982) 19–33.
D.E. Walrath and D.F. Adams, Experimental Mechanics 23 (1983) 105–110.
D.E. Walrath and D.F. Adams, Analysis of the Stress State in an Iosipescu Shear Test Specimen UWME-DR-301-102-1, University of Wyoming Composite Materials Research Group Report to NASA-Langley Research Centre (June 1983).
D.E. Walrath and D.F. Adams, Verification and Application of the Iosipescu Shear Test Method UWME-DR-401-103-1, University of Wyoming Composite Materials Research Group Report to NASA-Langley Research Centre (June 1984).
C.T. Herakowich and H.W. Bergner, Composites 11 (1980) 149–154.
S.R. Swanson, M. Messick and G.R. Toombes, Composites 16 (1985) 220–224.
J.A. Barnes, M. Kumosa and D. Hull, Composite Science and Technology 28 (1987) 251–268.
R.S. Barsoum, International Journal of Numerical Methods in Engineering 11 (1977) 85–98.
Data Preparation, User Manual Level 6.1, PAFEC Ltd, Nottingham (1986).
H.T. Corten, in Fracture, An Advanced Treatise, Liebowitz (ed.), Vol. 7 (1972) 675–769.
G.C. Sih, P.C. Paris and G.R. Irwin, International Journal of Fracture Mechanics 1 (1965) 189–203.
S.L. Pu, M.A. Hussain and W.E. Lorensen, International Journal of Numerical Methods in Engineering 12 (1978) 1727–1742.
B. Spencer and J.T. Barnby, Journal of Materials Science 11 (1976) 83–88.
E.M. Wu, ASME Journal of Applied Mechanics 34 (1967) 967–974.
A.S. Wang, N.N. Kishore and W.W. Feng, in Progress in Science and Engineering of Composites, T. Hayashi, K. Kawata and S. Umekawa, (eds) ICCM-IV, Tokyo (1982) 599–606.
R. Keal, PhD thesis, University of Liverpool (1982).
C.H. Gatward, P.J. Hogg and D. Hull, Deformation, Yield and Fracture of Polymers, Sixth International Conference, April 1985, Churchill College, Cambridge, U.K. (1985).
D. Hull, An Introduction to Composite Materials, Cambridge University Press (1981).
A.J. Russell and K.N. Street in Delamination and Debonding of Materials, ASTM STP 876, W.S. Johnson (ed.), American Society for Testing and Materials (1985) 349–370.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kumosa, M., Hull, D. Mixed-mode fracture of composites using Iosipescu shear test. Int J Fract 35, 83–102 (1987). https://doi.org/10.1007/BF00019793
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00019793