Skip to main content
Log in

Crack bifurcation modes in composite plates under impact

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Cracked plates with bonded elastic circular inclusions inside a matrix were subjected to an impact tensile loading. The influence of the inclusion on the propagation of an initial edge-crack was discussed in this paper. Two types of specimens were tested, that is with hard or soft inclusions surrounded by soft or hard matrices respectively. It has been shown that bi-, or tri-furcations of the propagating crack have persistently occured at the region of mesophase between matrix and circular inclusions. The phenomenon of splitting of the initial crack was common in both types of specimens.

For the definition of the prevailing stress field, the dynamic stress intensity factors were evaluated at different positions of the crack, as well as the crack-velocities along the main crack or its branches during their propagation. It was observed that the crack initiation in soft plates with hard inclusions was followed by the emission of Rayleigh waves, which contributed to the mode of fracture of the composite. Isochromatic patterns were also used to simulate the stress-field of the propagating cracks against the inclusions at distinct time-instants where the propagating crack was frozen at this instant and static photoelastic analysis was applied. These approximations gave satisfactory results with the cracks advancing inside the composite plates.

Résumé

On a soumis à des tractions par impact des plaques fissurées comportant des inclusions élastiques circulaires ancrées dans une matrice. On discute ici de l'influence de l'inclusion sur la propagation d'une fissure de bord initiale. On a essayé deux types d'éprouvettes, comportant respectivement des inclusions dures ou tendres, noyées dans une matrice tendre ou dure. On montre que, systématiquement, la fissure en propagation fait état de bifurcations dans la zone de mésophase située entre la matrice et les inclusions circulaires. Dans les deux types d'éprouvettes, on a constaté qu'il était courant que la fissure initiale subisse un phénomène de séparation. Pour définir le champ de contraintes déterminant, on a évalué les facteurs dynamiques d'intensité des contraintes à différentes positions de la fissure, ainsi que les vitesses de la fissuration suivant la fissure principale suivant ses branches au cours de la propagation. On observe que l'amorçage de la fissure dans les plaques tendres comportant des inclusions dures est suivi d'une émission d'ondes de Rayleigh qui contribuent à déterminer le mode de rupture du composite. On a également utilisé des tracés isochromatiques pour simuler le champ de contrainte, en figeant la fissure en cours de propagation et en procédant à une analyse photo-élastique. Ces approximations ont conduit à des résultats satisfaisants dans le cas de fissures qui s'avancent dans des plaques composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Theocaris, The Concept of Mesophase, Mechanisms of Crack Propagation, Metal Filled Polymers: Properties and Applications, M. Dekker, New York, (1986) 259–333.

    Google Scholar 

  2. P.S. Theocaris and J. Milios, International Journal of Solids and Structures 17(2) (1981) 217–230.

    Google Scholar 

  3. P.S. Theocaris and J. Milios, International Journal of Mechanical Sciences 23 (7) (1981) 423–436.

    Article  Google Scholar 

  4. P.S. Theocaris and J. Milios, Journal of Reinforced Plastics and Composites 2 (1983) 18–28.

    Google Scholar 

  5. P.S. Theocaris, M. Siarova and G.A. Papadopoulos, Journal of Reinforced Plastics and Composites 5 (1986) 23–50.

    Google Scholar 

  6. P.S. Theocaris and G.A. Papadopoulos, Journal of Reinforced Plastics and Composites 5 (1986) 120–140.

    Google Scholar 

  7. P.S. Theocaris and D. Pazis, International Journal of Solids and Structures 19(7) (1983) 611–623.

    Google Scholar 

  8. P.S. Theocaris and H.G. Georgiadis, Experimental Mechanics 25(1) (1985) 85–94.

    Google Scholar 

  9. O. Tamate, International Journal of Fracture 4 (1968) 257–265.

    Google Scholar 

  10. R.D. Bhargava and R.R. Bhargava, Journal of Applied Mathematics and Mechanics (Z.A.M.M.) 56 (1976) 95–100.

    Google Scholar 

  11. P.S. Theocaris and C.B. Demakos, Ingenieur Archiv. 55 (1985) 295–306.

    Google Scholar 

  12. P.S. Theocaris and C.B. Demakos, Journal of the Franklin Institute 322 (1986) 49–72.

    Article  Google Scholar 

  13. K. Ishikawa, A.K. Green and P.L. Pratt, Journal of Strain Analysis 9(4) (1974) 233–237.

    Google Scholar 

  14. A.S. Kobayashi, B. Johnson and B.G. Wade, in Fracture Analysis ASTM STP 560 (1974) 53–68.

  15. P.S. Theocaris and G.A. Papadopoulos, Engineering Fracture Mechanics 13 (1980) 683–698.

    Article  Google Scholar 

  16. P.S. Theocaris, in Advances in Fracture Research, S. Valluri et al. (eds.) Pergamon Press, I (1984) 707–728.

  17. J.R. Rice, in Fracture 1968 Vol. 2 (1968) 191–311.

  18. A.C. Eringen and E.S. Suhubi, in Elastodynamics, Academic press, Vol. 2 (1975) 584–591.

  19. L.B. Freund, Journal of the Mechanics and Physics of Solids 20 (1972) 129–140.

    Article  Google Scholar 

  20. P.S. Theocaris, in Developments in Stress Analysis 1979, Applied Science Publishers LTD (1979) 27–63.

  21. P.S. Theocaris in Mechanics of Fracture 1981 Nijhoff Publishers The Hague, Vol. 7 (1981) 189–252.

    Google Scholar 

  22. P.S. Theocaris and G.A. Papadopoulos, ASTM STP 791 (1981) 320.

  23. E.H. Yoffe, Philosophical Magazine 42 (1951) 739–750.

    Google Scholar 

  24. J.W. Craggs, Journal of the Mechanics and Physics of Solids 8 (1960) 66–75.

    Article  Google Scholar 

  25. K.B. Broberg, Arkiv för Fysik 18 (1960) 159–192.

    Google Scholar 

  26. J.D. Achenbach, International Journal of Solids and Structures 11 (1975) 1301–1314.

    Article  Google Scholar 

  27. B.R. Baker, Journal of Applied Mechanics 29 (1962) 449–458.

    Google Scholar 

  28. P.S. Theocaris, in New Developments in the Characterization of Polymers in the Solid State, Advances in Polymer Science, Springer Verlag, Vol. 66 (1985) 149–187.

  29. G.C. Papanicolaou, P.S. Theocaris and G.D. Spathis, Colloid and Polymer Science 258(11) (1980) 1231–1235.

    Google Scholar 

  30. P.S. Theocaris and T.P. Philippidis, Journal of Reinforced Plastics and Composites 4 (1985) 173–185.

    Google Scholar 

  31. P.S. Theocaris and J. Prassianakis, Journal of Applied Polymer Science 22 (1978) 1725–1734.

    Article  Google Scholar 

  32. J.W. Dally, in Proceedings of the XVth International Congress on Theoretical and Applied Mechanics, North-Holland, Amsterdam (1980) 79–89.

    Google Scholar 

  33. P.S. Theocaris, Engineering Fracture Mechanics 15(3–4) (1981) 283–290.

    Article  Google Scholar 

  34. P.S. Theocaris and H.G. Georgiadis, Journal of the Mechanics and Physics of Solids 32 (1984) 491–510.

    Article  Google Scholar 

  35. P.S. Theocaris and C.B. Demakos, Materialprüfung 6(4) (1984) 104–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theocaris, P.S., Demakos, C.B. Crack bifurcation modes in composite plates under impact. Int J Fract 32, 71–92 (1986). https://doi.org/10.1007/BF00019785

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019785

Keywords

Navigation