Skip to main content
Log in

Fracture initiation in a lamellar alloy

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The possibility of slip bands providing sites for fracture initiation within composites of lamellar construction is investigated. It is proposed that the tips of these bands, which terminate at the composite's bimetallic interfaces, are the specific locations of fracture initiation. Application of a dislocation intensity factor criterion allowed the applied stress at which cracks may be initiated to be calculated. The predictions compare favorably with experimental data. The dependence of the fracture initiation stress calculated from this model is shown to follow a Hall-Petch relationship.

Résumé

On étudie la possibilité de formation de bandes de glissement constituant un site d'amorçage d'une rupture dans l'association composite d'alliages à structure laminaire. On propose que les extrémités de ces bandes qui se situent aux interfaces du composite bi-métallique sont les sites spécifiques d'amorçage de la rupture. En appliquant un critère comportant un facteur d'intensité des dislocations, on arrive à calculer la contrainte appliquée pour laquelle des fissures peuvent être amorcées. Les prédictions se comparent assez bien aux données expérimentales. On démontre que la contrainte d'amorçage de la rupture calculée par ce modèle est en dépendance d'une relation de Hall-Petch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bibring, in Proceedings of the Conference on In Situ Composites, Lakeville, Connecticut, reported by National Materials Advisory Board, Vol. 2, Papers on Mechanical Properties (1973) 1.

  2. A.R.Rosenfield, E.Votava, and G.T.Hahn, Transactions of the American Society of Metals 61 (1968) 807.

    Google Scholar 

  3. J.T.Barnby and M.R.Johnson, Metal Science Journal 3 (1969) 155.

    Google Scholar 

  4. C.Zener, Transactions of the American Society of Metals 40 (1948) 3.

    Google Scholar 

  5. N.J.Petch, Journal of the Iron and Steel Institute 174 (1953) 25.

    Google Scholar 

  6. A.N.Stroh, Proceedings of the Royal Society of London A 223 (1954) 404.

    Google Scholar 

  7. A.N.Stroh, Proceedings of the Royal Society of London A 232 (1955) 548.

    Google Scholar 

  8. A.N. Stroh, in Advances in Physics, ed. N.F. Mott, 6 (1957) 418.

  9. A.H.Cottrell, Transactions of the Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) 212 (1958) 192.

    Google Scholar 

  10. J.D.Eshelby, F.C.Frank, and F.R.N.Nabarro, Philosophical Magazine 42 (1951) 351.

    Google Scholar 

  11. E.Smith, Acta Metallurgica 16 (1968) 313.

    Article  Google Scholar 

  12. E.Smith, in Dislocations in Solids, ed. F.R.N.Nabarro, 4 North-Holland, New York (1979) 363–448.

    Google Scholar 

  13. J.Dundurs and T.Mura, Journal of the Mechanics and Physics of Solids 12 (1964) 177.

    Article  Google Scholar 

  14. T.C.Lindley, G.Oates, and C.E.Richards, Acta Metallurgica 18 (1970) 1127.

    Article  Google Scholar 

  15. H.E.Cline and D.F.Stein, Transactions of the Metallurgical Society AIME 245 (1969) 841.

    Google Scholar 

  16. G.Omoike and C.R.Vilmann, Journal of Composite Materials 17, No. 4 (1983) 316.

    Google Scholar 

  17. B.A.Bilby and J.D.Eshelby, in Fracture, ed. H.Liebowitz, 1, Academic Press, New York (1968) 99–182.

    Google Scholar 

  18. B.A.Bilby, A.H.Cottrell, and K.H.Swinden, Proceedings of the Royal Society of London A 272 (1963) 304.

    Google Scholar 

  19. C.R.Vilmann and T.Mura, Journal of Applied Mechanics 46 (1979) 817.

    Google Scholar 

  20. V.Vitek, Journal of the Mechanics and Physics of Solids 24 (1976) 263.

    Article  Google Scholar 

  21. S.J.Chang, International Journal of Fracture 16 (1980) R79-R82.

    Google Scholar 

  22. K.Tanaka and T.Mura, Journal of Applied Mechanics 48 (1981) 97.

    Google Scholar 

  23. H.Riedel, Journal of the Mechanics and Physics of Solids 24 (1976) 277.

    Article  Google Scholar 

  24. K.E.Atkinson, Society for Industrial and Applied Mathematics Journal, Numerical Analysis 4 (1967) 337.

    Google Scholar 

  25. K.E. Atkinson, Society for Industrial and Applied Mathematics Journal 13 (1976).

  26. D.B.Bogy, Journal of Applied Mechanics 93 (1971) 911.

    Google Scholar 

  27. J.R.Rice, Journal of Applied Mechanics 35 (1968) 379.

    Google Scholar 

  28. R.N.Armstrong and A.K.Head, Acta Metallurgica 13 (1965) 759.

    Article  Google Scholar 

  29. E.Hornbogen, in Physical Metallurgy, ed. R.W.Cahn, North-Holland, New York, Second Revised Edition (1970) 589–653.

    Google Scholar 

  30. E.R. Thompson, F.D. George, and E.M. Breinan, in. Proceedings of the Conference on In Situ Composites, Lakeville, Connecticut, reported by National Materials Advisory Board, Vol. 2, Papers On Mechanical Properties (1973) 71.

  31. Michigan Technological University, Houghton, Michigan 49941, Research Proposal submitted to National Science Foundation, “Interphase Boundary Initiated Fracture” (1981) 76–84.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This was supported by the National Science Foundation under Grant No. DMR-8116363.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omoike, G.O., Vilmann, C.R. Fracture initiation in a lamellar alloy. Int J Fract 30, 261–273 (1986). https://doi.org/10.1007/BF00019706

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019706

Keywords

Navigation