Skip to main content
Log in

A cracked plate repaired by bonded reinforcements

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A plate with a semi-infinite crack is repaired by having reinforcing sheets bonded to its faces, and is subjected to a uniformly distributed tensile load at right-angles to the crack. It is shown that the crack extension force has a finite value, provided that the reinforced structure can still carry the load if the crack, instead of being semi-infinite, runs across the whole plate, cutting it in half. The case of a plate with a crack of finite length is considered next: the determination of the force is reduced to the solution of a Fredholm integral equation, from which the asymptotic behaviour for short cracks is deduced by the method of successive approximations. These results provide an upper bound to the force for arbitrary crack lengths. A comparison with numerical results suggests that this upper bound is sufficiently close to the actual value to be useful in practice. The residual thermal stress induced by the process of bonding, and the resulting force on a crack, are shown to depend sensitively on the nature of the constraint at the edges of the plate, as well as on the extent of the plate outside the heated region. A number of extensions to less idealized configurations are discussed.

Résumé

On a procédé à une réparation d'une plaque présentant une fissure semi-infinie en fixant des tôles de renforcement sur chacune de ses faces et on a soumis cette plaque à une contrainte de traction uniformément distribuée à angle droit de la fissure. On montre que la force d'extension de la fissure a une valeur finie, pour autant que la structure de renforcement puisse encore supporter la charge si la fissure au lieu d'être semi-infinie se développe à travers toute la plaque et la coupe ainsi en deux. On considère ensuite le cas d'une plaque possédant une fissure de longueur finie: la détermination de la force se réduit à la solution d'une équation intégrale de Fredholm à partir de laquelle on peut déduire le comportement asymptotique dans le cas de fissure courte par une méthode d'approximations successives. Ces résultats fournissent une limite supérieure à la force nécessaire pour étendre des fissures de longueurs arbitraires. Une comparaison avec des résultats numériques suggèrent que cette limite supérieure est suffisamment proche de la valeur actuellement utilisable en pratique. On montre que les contraintes thermiques résiduelles qui sont induites par le processus de collage et que les forces qui en résultent sur la fissure, dépendent de manière sensible de la nature des contraintes au bord de la plaque ainsi que du développement de la plaque en dehors de la région chauffée. On discute un certain nombre d'extensions à des configurations moins idéales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Baker, Composites 9 (1978) 1–16.

    Article  Google Scholar 

  2. A.A. Baker, G.A. Hawkes and E.J. Lumley, in Proceedings of the Second International Conference on Composite Materials, B. Noton et al. (eds.), AIME (1978).

  3. A.A. Baker, M.J. Davis and G.A. Hawkes, in Proceedings of the Tenth Symposium of the International Committee on Aeronautical Fatigue, Brussels (1979). (This work has a limited distribution. Copies may be obtained from Dr. Baker, A.R.L., Box 4331 G.P.O., Melbourne 3001, Australia).

  4. J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, N.Y. (1968) 64.

    Google Scholar 

  5. L.M. Keer, C.T. Lin and T. Mura, Journal of Applied Mechanics 43 (1976) 652–656.

    Google Scholar 

  6. M.M. Ratwani, Journal of Engineering Materials and Technology 100 (1978) 46–51.

    Google Scholar 

  7. M.M. Ratwani, AIAA Journal 17 (1979) 988–994.

    Google Scholar 

  8. L.J. Hart-Smith, Analysis and Design of Advanced Composite Bonded Joints, NASA Contractor Report CR-2218 (1974).

  9. I.N. Sneddon and M. Lowengrub, Crack Problems in the Classical Theory of Elasticity, Wiley, N.Y. (1969).

    Google Scholar 

  10. G.R. Irwin, Journal of Applied Mechanics 24 (1957) 361–364.

    Google Scholar 

  11. M.J. Lighthill, Fourier Analysis and Generalized Functions, Chap. 4, Cambridge University Press (1958).

  12. J.P. Benthem and W.T. Koiter, in Methods of Analysis and Solutions of Crack Problems, G.C. Sih (ed.), Noordhoff, Leyden (1973).

    Google Scholar 

  13. A.B.J. Clark and G.R. Irwin, Experimental Mechanics 6 (1966) 321–330.

    Google Scholar 

  14. R. Jones and R.J. Callinan, Journal of Structural Mechanics 8 (1980) 143–149.

    Google Scholar 

  15. C.C. Poe, in Damage Tolerance in Aircraft Structures, Special Technical Publication 486, ASTM, Philadelphia (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, L.R.F. A cracked plate repaired by bonded reinforcements. Int J Fract 18, 135–144 (1982). https://doi.org/10.1007/BF00019638

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019638

Keywords

Navigation