International Journal of Fracture

, Volume 64, Issue 1, pp 1–26 | Cite as

Near tip fields for a stationary mode III crack between a linear elastic and an elastic power law hardening material

  • M. T. A. Saif
  • C -Y. Hui
Article

Abstract

The asymptotic stress field near the tip of an antiplane crack lying along a planar bimaterial interface between an elastic and an elastic power law hardening material is analysed. Deformation plasticity theory is assumed in the analysis. We show that the shear stress field near the tip is of the form% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbaabaGaeyySaelaaOGaaeiiaiab% gYJi+jaabccacaWGYbWaaWbaaSqabeaadaWcgaqaaiabgkHiTiaaig% daaeaacaGGOaGaamOBaiabgUcaRiaaigdacaGGPaaaaaaakiaabcca% caWGubWaa0baaSqaaiaaicdadaWgaaadbaGaeyySaelabeaaaSqaai% aacIcacaWGPbGaaiykaaaakiaabccacaGGOaGaeqiUdeNaaiykaiaa% bccacqGHRaWkcaqGGaGaamOCamaaCaaaleqabaGaamiDamaaBaaame% aacaaIXaaabeaaliabgkHiTiaaigdaaaGccaqGGaGaamivamaaDaaa% leaacaaIXaWaaSbaaWqaaiabgglaXcqabaaaleaacaGGOaGaamyAai% aacMcaaaGccaqGGaGaaiikaiabeI7aXjaacMcacaqGGaGaey4kaSIa% aeiiaiabl+UimjaabccacqGHRaWkcaqGGaGaamOCamaaCaaaleqaba% GaamiDamaaBaaameaacaWGRbaabeaaliabgkHiTiaaigdaaaGccaqG% GaGaamivamaaDaaaleaacaWGRbWaaSbaaWqaaiabgglaXcqabaaale% aacaGGOaGaamyAaiaacMcaaaGccaqGGaGaaiikaiabeI7aXjaacMca% caqGGaGaey4kaSIaaeiiaiabl+Uimbaa!809A!\[\tau _i^ \pm {\text{ }} \sim {\text{ }}r^{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} {(n + 1)}}} \right. \kern-\nulldelimiterspace} {(n + 1)}}} {\text{ }}T_{0_ \pm }^{(i)} {\text{ }}(\theta ){\text{ }} + {\text{ }}r^{t_1 - 1} {\text{ }}T_{1_ \pm }^{(i)} {\text{ }}(\theta ){\text{ }} + {\text{ }} \cdots {\text{ }} + {\text{ }}r^{t_k - 1} {\text{ }}T_{k_ \pm }^{(i)} {\text{ }}(\theta ){\text{ }} + {\text{ }} \cdots \]for. Here r is the radial distance from the crack tip, θ is the angle measured from the interface, n is the hardening exponent, and + and — indicate the plastic and elastic regions respectively. The exponents tkare uniquely determined by n, and for k⩾1,tk+1> tk, t1. For kM, where M is the largest positive integer for which (n(M+1)-M)/(n+1) < 0.5 (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaakaaabaGaamOBamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa% iodacaaI0aGaamOBaiabgUcaRiaaigdaaSqabaaaaa!431D!\[\sqrt {n^2 + 34n + 1} \] + 1 + n − 1)/(n + 1),tk = (n(k + 1) − k)/(n + 1). The corresponding angular functions % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadsfadaqhaaWcbaGaam4AamaaBaaameaacqGHXcqSaeqaaaWc% baGaaiikaiaadMgacaGGPaaaaOGaaiikaiabeI7aXjaacMcaaaa!45AB!\[T_{k_ \pm }^{(i)} (\theta )\] are determined by the J-integral and material parameters and can be obtained completely from the asymptotic analysis. Some of the terms of stresses with kM may be singular. For k>M, tkcan be obtained numerically, and the corresponding % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadsfadaqhaaWcbaGaam4AamaaBaaameaacqGHXcqSaeqaaaWc% baGaaiikaiaadMgacaGGPaaaaOGaaiikaiabeI7aXjaacMcaaaa!45AB!\[T_{k_ \pm }^{(i)} (\theta )\] can be obtained completely or within multiplicative constants. All the terms of stresses with k>M vanish as rα, when r→0, where α>0, for all 1<n<∞. It is important to note that although the individual terms of the stress expansion is variable separable, the resultant stress field is non-separable. The values of t1,...,t5 for 1<n≤20 and the first three terms of stresses for various values of n and material parameters are computed explicitly in the paper. Our analysis shows that, in the series solution for stresses in the plastic domain, the effect of the linear elastic material appears in the second or higher order terms depending on the value of n. In spite of this effect of elasticity on the higher order terms, the region of dominance of the HRR field in the plastic zone % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadkhadaahaaWcbeqaaiabgkHiTmaalyaabaGaaiikaiaaigda% aeaacaWGUbGaey4kaSIaaGymaiaacMcaaaaaaOGaamivamaaDaaale% aacaaIWaWaaSbaaWqaaiabgUcaRaqabaaaleaacaGGOaGaamyAaiaa% cMcaaaGccaGGOaGaeqiUdeNaaiykaaaa!4B3E!\[r^{ - {{(1} \mathord{\left/ {\vphantom {{(1} {n + 1)}}} \right. \kern-\nulldelimiterspace} {n + 1)}}} T_{0_ + }^{(i)} (\theta )\] may be significantly reduced compared to the corresponding region of dominance when the crack is in a homogeneous elastic power law hardening material.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.L. Williams, Bulletin of the Seismological Society of America 49, 2 (1959) 199–204.Google Scholar
  2. 2.
    J.R. Rice and G.C. Sih, Journal of Applied Mechanics 32 (1965) 418–423.Google Scholar
  3. 3.
    A.H. England, Journal of Applied Mechanics 32 (1965) 400–402.Google Scholar
  4. 4.
    M. Comninou, Journal of Applied Mechanics 44 (1977) 631–636.Google Scholar
  5. 5.
    J.K. Knowles and Eli Sternberg, Journal of Elasticity 13 (1983) 257–293.Google Scholar
  6. 6.
    C.F. Shih and R.J. Asaro, Journal of Applied Mechanics 55 (1988) 299–316.Google Scholar
  7. 7.
    C.F. Shih and R.J. Asaro, Journal of Applied Mechanics 56 (1989) 763–779.Google Scholar
  8. 8.
    C.F. Shih and R.J. Asaro, Journal of Applied Mechanics 58 (1991) 450–463.Google Scholar
  9. 9.
    C.R. Champion and C. Atkinson, Proceedings, Royal Society of London A429 (1990) 247–257.Google Scholar
  10. 10.
    C.R. Champion and C. Atkinson, Proceedings, Royal Society of London A432 (1991) 547.Google Scholar
  11. 11.
    T.C. Wang, Engineering Fracture Mechanics 37, 3 (1990) 527–538.Google Scholar
  12. 12.
    W.J. Drugan, Journal of Applied Mechanics 58 (1991) 111–119.Google Scholar
  13. 13.
    K. Bose and P. Ponte Castãneda, Journal of the Mechanics and Physics of Solids 40, 5 (1992) 1053–1103.Google Scholar
  14. 14.
    H.V. Tippur and A.J. Rosakis, Experimental Mechanics 31, 3 (1991) 243–251.Google Scholar
  15. 15.
    N.P. O'Dowd, M.G. Stout and C.F. Shih, Philosophical Magazine A 66, 6 (1992) 1037–1064.Google Scholar
  16. 16.
    S.M. Sharma and N. Aravas, Journal of the Mechanics and Physics of Solids 39, 8 (1991) 1043–1072.Google Scholar
  17. 17.
    S.M. Sharma and N. Aravas, International Journal of Solids and Structures 30, 5 (1993) 695–723.Google Scholar
  18. 18.
    N. Aravas and D.A. Blazo, Acta Mechanica 90 (1991) 139–153.Google Scholar
  19. 19.
    J.R. Rice and G.F. Rosengren, Journal of the Mechanics and Physics of Solids 16 (1968) 1–12.Google Scholar
  20. 20.
    J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 16 (1968) 13–31.Google Scholar
  21. 21.
    H. Riedel, Zeitschrift für Metallkunde 69 (1978) 755–760.Google Scholar
  22. 22.
    J.R. Rice, Journal of Applied Mechanics 34 (1967) 287–298.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • M. T. A. Saif
    • 1
  • C -Y. Hui
    • 1
  1. 1.Theoretical and Applied MechanicsCornell UniversityIthacaUSA

Personalised recommendations