Skip to main content
Log in

Mode I fracture modeling of elastomer-toughened polymers

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Analytical models are developed to correlate the mode I fracture toughness of elastomer-toughened polymers with microstructural damage modes occurring around the crack-tip. The total energy dissipation caused by three dominant damage modes, namely, plastic shear band formation, plastic void growth, and plastic deformation of the entire matrix resin, is used as the basis to derive the analytical expression for the mode I fracture toughness of the toughened polymers. Numerical results are presented and compared with available experimental data for a typical toughened epoxy resin. Parametric results involving a number of material and microstructural variables indicate some very interesting trends, and provide some guidelines toward achieving optimum fracture toughness values for these types of material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Bascom, R.Y. Ting, R.J. Moulton, C.K. Riew and A.R. Siebert, Journal of Materials Science 16 (1981) 2657–2664.

    Article  Google Scholar 

  2. A.J. Kinloch, S.J. Shaw, D.A. Tod and D.L. Hunston, Polymer 24 (1983) 1341–1354.

    Article  Google Scholar 

  3. A.J. Kinloch, S.J. Shaw and D.L. Hunston, Polymer 24 (1983) 1355–1363.

    Article  Google Scholar 

  4. A.F. Yee and R.A. Pearson, Journal of Materials Science 21 (1986) 2462–2474.

    Article  Google Scholar 

  5. R.A. Pearson and A.F. Yee, Journal of Materials Science 21 (1986) 2475–2488.

    Article  Google Scholar 

  6. A.C. Garg and Y.W. Mai, Composites Science and Technology 31 (1988) 179–223.

    Article  Google Scholar 

  7. H.J. Sue, Polymer Engineering Science 31 (1991) 270–274.

    Article  Google Scholar 

  8. H.J. Sue, Polymer Engineering Science 31 (1991) 275–288.

    Article  Google Scholar 

  9. S. Kunz-Dauglass, P.W.R. Beaumont and M.F. Ashby, Journal of Materials Science 15 (1980) 1109–1123.

    Article  Google Scholar 

  10. A.G. Evans, Z.B. Ahmad, D.G. Gilbert and P.W.R. Beaumont, Acta Metallurgica 34 (1986) 79–87.

    Article  Google Scholar 

  11. A.J. Kinloch, in Rubber-Toughened Plastics, C.K. Riew (ed.) Advances in Chemistry Series, vol. 222, American Chemical Society, Washington, DC (1980) 67–91.

    Google Scholar 

  12. Y. Huang and A.J. Kinloch, Journal of Materials Science 27 (1992) 2753–2762.

    Article  Google Scholar 

  13. Y. Huang and A.J. Kinloch, Journal of Materials Science 27 (1992) 2763–2769.

    Article  Google Scholar 

  14. J. Eftis and H. Liebowitz, Engineering Fracture Mechanics 7 (1975) 101–135.

    Article  Google Scholar 

  15. J.G. Williams, Fracture Mechanics of Polymers, Ellis Horwood Ltd., Chichester (1984).

    Google Scholar 

  16. M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics, Oxford University Press, New York (1985).

    Google Scholar 

  17. E.A. Chakachery, PhD dissertation, Texas A&M University (1989).

  18. B. Budiansky, J.W. Hutchinson and J.C. Lambropoulos, International Journal of Solids and Structures 19 (1983) 337–355.

    Article  Google Scholar 

  19. A.G. Evans and K.T. Faber, Journal of the American Ceramic Society 67 (1984) 255–260.

    Article  Google Scholar 

  20. W.L. Bradley, in Application of Fracture Mechanics to Composite Materials, K. Friedrich (ed.) Elsevier Science Publishers B.V. (1989) 159–187.

  21. M.F. Hibbs, PhD dissertation, Texas A&M University (1988).

  22. K.N. Raju, International Journal of Fracture Mechanics 5 (1969) 101–112.

    Article  Google Scholar 

  23. B. Lawn, Fracture of Brittle Solids, 2nd edn., Cambridge University Press, Cambridge (1993).

    Book  Google Scholar 

  24. K.N. Shivakumar and J.H. CrewsJr., Engineering Fracture Mechanics 28 (1987) 319–330.

    Article  Google Scholar 

  25. D.R. Williams, D.L. Davidson and J. Lankford, Experimental Mechanics 20 (1980) 134–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohdoh, M., Chaturvedi, S.K. & Sierakowski, R.L. Mode I fracture modeling of elastomer-toughened polymers. Int J Fract 75, 285–306 (1996). https://doi.org/10.1007/BF00019610

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019610

Navigation