Skip to main content
Log in

Crack growth in non-homogeneous transformable ceramics. Part I: Constrained straight cracks

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Crack growth in transformable ceramics is studied using a finite element approach. In the analysis, a continuum theory is used for the description of the inelastic deformation due to a stress-induced martensitic type phase transformation with both dilatation and shear strain components. Attention is focussed on materials in which the transformable phase is not distributed homogeneously, as is the case in, for example, most ZTA materials and Duplex Ceramics. In this paper, the distribution of transformable phase is assumed to be symmetric with respect to the crack plane; in the companion paper [1] this assumption is left. The effect of the heterogeneity on the toughness is studied in detail. A small scale boundary value crack problem is formulated and an incremental loading algorithm with a nodal release technique is used to simulate crack advance. It is found that in all cases studied the maximum toughness improved relative to homogeneous materials with the same average volume fraction of zirconia. The results are presented in plots of transformation zones and crack-growth resistance curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.Th.M.Stam and E.van derGiessen, Crack growth in non-homogeneous transformable ceramics. Part II: Crack deflection, International Journal of Fracture 79 (1996) 273–293.

    Google Scholar 

  2. A.G.Evans and A.H.Heuer, Journal of the American Ceramics Society 63 (1980) 241–248.

    Google Scholar 

  3. D.J.Green, R.H.J.Hannink and M.V.Swain, Transformation Toughening of Ceramics, CRC Press, Boca Raton, Florida, USA (1991).

    Google Scholar 

  4. M.Rühle, N.Claussen and A.H.Heuer, Journal of the American Ceramics Society 69 (1986) 195–197.

    Google Scholar 

  5. E.H.Lutz and N.Claussen, Journal of the American Ceramics Society 74 (1991) 11–18.

    Google Scholar 

  6. A.G.Evans, N.Burlingame, M.Drory and W.M.Kriven, Acta Metallurgica 29 (1981) 447–456.

    Google Scholar 

  7. B. Karihaloo, in Structural Ceramics Processing, Microstructure and Properties., J.J. Bentzen et al. (eds.), Riso, Denmark (1990) 359–364.

    Google Scholar 

  8. P. Den Exter, Synthesis, Microstructure and Mechanical Properties of Zirconia—Alumina Composites. Ph.D. thesis, Enschede, The Netherlands (1991).

  9. Q.P.Sun, K.C.Hwang and S.U.Yu, Journal of Mechanics and Physics of Solids 39 (1991) 507–524.

    Google Scholar 

  10. R.M.McMeeking and A.G.Evans, Journal of the American Ceramics Society 65 (1982) 242–246.

    Google Scholar 

  11. B.Budiansky, J.W.Hutchinson and J.C.Lambropoulos, International Journal of Solids and Structures 19 (1983) 337–355.

    Google Scholar 

  12. P.E.Reyes-Morel and I.W.Chen, Journal of the American Ceramics Society 71 (1988) 343–353.

    Google Scholar 

  13. I.W.Chen and P.E.Reyes-Morel, Journal of the American Ceramics Society 69 (1986) 181–189.

    Google Scholar 

  14. G.Th.M.Stam, E.Van derGiessen and P.Meijers, International Journal of Solids and Structures 31 (1994) 1923–1948.

    Google Scholar 

  15. G.Th.M. Stam and E. Van der Giessen, in Fracture Mechanics; 25th volume, ASTM STP 1220, F. Erdogan and R.J. Hartranft (eds.), Philadelphia, USA (1995) 3–18.

  16. G.Th.M.Stam, E.Van derGiessen and P.Meijers, Materials & Design 14 (1993) 83–86.

    Google Scholar 

  17. M.Rühle, A.Strecker, D.Waidelich and B.Kraus, Journal of the American Ceramics Society 12 (1984), 256–274.

    Google Scholar 

  18. M.Rühle and A.G.Evans, Progress in Material Science 33 (1989) 85–167.

    Google Scholar 

  19. A.G.Evans and R.M.Cannon, Acta Metallurgica 34 (1986) 2435–2441.

    Google Scholar 

  20. J.D. Eshelby, Progress in Solid Mechanics II, I.N. Sneddon and R. Hill (eds.) (1961) 89–140.

  21. T.Mori and K.Tanaka, Acta Metallurgica 21 (1973) 571–574.

    Google Scholar 

  22. G.Th.M. Stam, A Micromechanical Approach to Transformation Toughening in Ceramics, Ph.D. thesis, Delft University of Technology (1994).

  23. J.W. Hutchinson, Harvard University Report TR74-1042 (1974).

  24. J.C.Lambropoulos, International Journal of Solids and Structures 22 (1986) 1083–1106.

    Google Scholar 

  25. C.L.Hom and R.M.McMeeking, International Journal of Solids and Structures 30 (1990) 1211–1223.

    Google Scholar 

  26. G.Th.M.Stam and E.Van derGiessen, Mechanics of Materials 21 (1995) 51–71.

    Google Scholar 

  27. H.E.Lutz and N.Claussen, Journal of the European Ceramics Society 7 (1991) 209–218.

    Google Scholar 

  28. H.E.Lutz and N.Claussen, Journal of the European Ceramics Society 7 (1991) 219–226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stam, G., Van Der Giessen, E. Crack growth in non-homogeneous transformable ceramics. Part I: Constrained straight cracks. Int J Fract 79, 249–271 (1996). https://doi.org/10.1007/BF00019380

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019380

Keywords

Navigation