Skip to main content
Log in

An edge dislocation of constant velocity near a static internal crack

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

An edge dislocation of constant velocity near a static internal crack was investigated. The dislocation slip and climb and dislocation source were considered. The crack surface was simulated with static continuous dislocations. After obtaining the distribution of static dislocations in the crack, we calculated the stress field in the entire space. Using the stress distribution, we then computed the stress intensity factors at both crack tips and the image force on the edge dislocation. Numerical results are provided to describe in detail the effect of velocity and crack length on toughness and image force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.C. Frank, Proceedings of the Physical Society, London, A 62A (1949) 131.

    Google Scholar 

  2. J.D. Eshelby, Proceedings of the Physical Society, London, A 62A (1949) 307.

    Google Scholar 

  3. D.D. Ang and M.L. Williams, Proceeding 4th Midwestern Conference on Solid Mechanics, University of Texas Press, Austin (1959) 36.

    Google Scholar 

  4. J. Weertman, Journal of Applied Physics 38 (1967) 2612.

    Google Scholar 

  5. J. Weertman, Mathematical Theory of Dislocations, T. Mura (ed.), American Society of Mechanical Engineers, New York (1969) 178.

    Google Scholar 

  6. F.R.N. Nabarro, Philosophical Magazine 42 (1951) 1224.

    Google Scholar 

  7. T. Mura, Philosophical Magazine 8 (1963) 843.

    Google Scholar 

  8. J.D. Eshelby, Physical Review 90 (1953) 248.

    Google Scholar 

  9. F. Lund, Physical Review Letters 54 (1985) 14.

    Google Scholar 

  10. F. Lund, Journal of Materials Research 3 (1988) 280.

    Google Scholar 

  11. S.M. Ohr, Materials Science and Engineering 72 (1985) 1.

    Google Scholar 

  12. T.Y. Zhang and J.C.M. Li, Materials Science and Engineering A 142 (1991) 35.

    Google Scholar 

  13. T.Y. Zhang and J.C.M. Li, Acta Metallurgica 39 (1991) 2739.

    Google Scholar 

  14. S.D. Wang and S. Lee, Materials Science and Engineering A 130 (1990) 1.

    Google Scholar 

  15. J.R. Rice and R. Thomson, Philosophical Magazine 29 (1974) 73.

    Google Scholar 

  16. S.T. Shiue and S. Lee, Engineering Fracture Mechanics 22 (1985) 1105.

    Google Scholar 

  17. I.H. Lin and R. Thomson, Acta Metallurgica 34 (1986) 187.

    Google Scholar 

  18. V. Lakshmanan and J.C.M. Li, Materials Science and Engineering A 104 (1988) 95.

    Google Scholar 

  19. R.H. Zhao, S.H. Dai and J.C.M. Li, International Journal of Fracture 29 (1985) 3.

    Google Scholar 

  20. R.H. Zhao and J.C.M. Li, Journal of Applied Physics 58 (1985) 4117.

    Google Scholar 

  21. C.C. Huang, S. Lee and C.C. Yu, Phys. Stat. Sol.(a) 140 (1994) 369.

    Google Scholar 

  22. Y.Z. Tsai and S. Lee, Journal of Applied Physics 73 (1993) 4869.

    Google Scholar 

  23. N.I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen (1953).

    Google Scholar 

  24. M. Sakamoto, Philosophical Magazine, A 63A (1991) 1241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, YZ., Tu, C.T. & Lee, S. An edge dislocation of constant velocity near a static internal crack. Int J Fract 71, 15–35 (1995). https://doi.org/10.1007/BF00019339

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019339

Keywords

Navigation