Skip to main content
Log in

On the fundamental energy argument of elastic fracture mechanics

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Energy arguments remain, even today, as probably the most fundamental physically-reasoned justification for the application of linear elastic fracture mechanics to brittle materials. Accordingly, they have attracted and continue to attract quite a number of investigations. Not all of these studies employ the same approach. Unfortunately, nor do they all lead to the same conclusions regarding the implications of elastic fracture mechanics. Here, by examining the energy balance of fracture mechanics from a classical physics viewpoint, equivalent valid approaches are identified. This in turn enables the various contributions over the years to be placed in perspective with respect to whether or not they are correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Griffith, Philosophical Transactions of the Royal Society, London, A 221 (1920) 163–198.

    Article  Google Scholar 

  2. K. Wolf, Zeitschrift für angewandte Mathematik und Mechanik 3 (1923) 107–112.

    Article  Google Scholar 

  3. A.A. Griffith, Proceedings of the First International Congress of Applied Mechanics, Delft, The Netherlands (1924) 55–63.

  4. I.N. Sneddon, Proceedings of the Royal Society, London, A 187 (1946) 229–260.

    Article  Google Scholar 

  5. J.D. Eshelby, Philosophical Transactions of the Royal Society, London, A 224 (1951) 87–112.

    Article  Google Scholar 

  6. J.D. Eshelby, in Solid State Physics, F. Seitz and D. Turnbull (eds.), Vol. 3, Academic Press, New York (1956) 79–144.

    Google Scholar 

  7. J.D. Eshelby, in Internal Stresses and Fatigue in Methods, G. Rassweiler and W. Grube (eds.), Elsevier, New York (1959) 41–58.

    Google Scholar 

  8. G.R. Irwin, Journal of Applied Mechanics 24 (1957) 361–364.

    Google Scholar 

  9. J.L. Sanders, Journal of Applied Mechanics 27 (1960) 352–353.

    Article  Google Scholar 

  10. J.L. Swedlow, International Journal of Fracture Mechanics 1 (1965) 210–216.

    Article  Google Scholar 

  11. A.J.M. Spencer, International Journal of Engineering Science 3 (1965) 441–449.

    Article  Google Scholar 

  12. G.P. Cherepanov, Journal of Applied Mathematics and Mechanics 31 (1967) 503–512.

    Article  Google Scholar 

  13. G.C. Sih and H. Liebowitz, International Journal of Solids and Structures 3 (1967) 1–22.

    Article  Google Scholar 

  14. J.R. Rice, in Fracture: An Advanced Treatise, H. Liebowitz (ed.), Vol. II, Academic Press, New York (1968) 191–311.

    Google Scholar 

  15. B.A. Bilby and J.D. Eshelby, in Fracture: An Advanced Treatise, H. Liebowitz (ed.), Vol. I, Academic Press, New York (1968) 99–182.

    Google Scholar 

  16. J.D. Eshelby, in Inelastic Behavior of Solids, M.F. Kanninen et al. (eds.), McGraw-Hill, New York (1969) 77–115.

    Google Scholar 

  17. J. Eftis, N. Subramonian and H. Liebowitz, Engineering Fracture Mechanics 9 (1977) 753–764.

    Article  Google Scholar 

  18. G.P. Cherepanov, Mechanics of Brittle Fracture (English edition), McGraw-Hill, New York (1979).

    Google Scholar 

  19. J. Eftis and D.L. Jones, International Journal of Fracture 20 (1982) 267–289.

    Article  Google Scholar 

  20. J. Eftis, International Journal of Fracture 24 (1982) 59–80.

    Article  Google Scholar 

  21. J. Eftis, Engineering Fracture Mechanics 26 (1987) 105–125.

    Article  Google Scholar 

  22. J. Eftis, Engineering Fracture Mechanics 26 (1987) 567–592.

    Article  Google Scholar 

  23. W.R. Tyson and G. Roy, Engineering Fracture Mechanics 33 (1989) 827–830.

    Article  Google Scholar 

  24. J. Eftis, D.L. Jones and H. Liebowitz, Engineering Fracture Mechanics 36 (1990) 537–574.

    Article  Google Scholar 

  25. I.S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill, New York (1956).

    Google Scholar 

  26. C.E. Inglis, Transactions of the Institute of Naval Architects, London 55 (1913) 219–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keating, R.F., Sinclair, G.B. On the fundamental energy argument of elastic fracture mechanics. Int J Fract 74, 43–61 (1996). https://doi.org/10.1007/BF00018574

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018574

Keywords

Navigation