Skip to main content
Log in

Cloning of a low-temperature-induced genelti2 from the cyanobacteriumAnabaena variabilis M3 that is homologous to α-amylases

  • Update Section
  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A gene calledlti2 which is induced by a shift to a low temperature was isolated from the cyanobacteriumAnabaena variabilis strain M3. This gene contained an open reading frame of 552 amino acid residues which exhibited homology to known α-amylases. The level oflti2 transcript increased 40-fold within an hour after a temperature shift from 38 to 22°C and then slowly decreased to a low steady-state level. A less extensive expression of thelti2 gene is also induced by a temperature shift from 22 to 38°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Amemura A, Chakraborty R, Fujita M, Noumi T, Futai M: Cloning and nucleotide sequence of the isoamylase gene fromPseudomonas amyloderamosa SB-15. J Biol Chem 263: 9271–9275 (1988).

    PubMed  Google Scholar 

  2. Baecker PA, Greenberg E, Preiss J: Biosynthesis of bacterial glycogen: primary structure ofEscherichia coli 1,4-α-D-glucan: 1,4-α-D-glucan 6-α-D-(1,4-α-D-glucano)-transferases as deduced from the nucleotide sequence of theglgB gene. J Biol Chem 261: 8728–8743 (1986).

    Google Scholar 

  3. Baulcombe DC, Huttly AK, Martienssen RA, Barker RF, Jarvis MG: A novel wheat α-amylase gene (α-Amy3). Mol Gen Genet 209: 33–40 (1987).

    Article  Google Scholar 

  4. Binder F, Huber O, Boeck A: Cyclodextrin-glycosyltrans-ferase fromKlebsiella pneumoniae M5a1, nucleotide sequence and expression. Gene 47: 269–277 (1986).

    Article  PubMed  Google Scholar 

  5. Buisson G, Duee E, Haser R, Payan F: Three dimensional structure of porcine pancreatic α-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J 6: 3909–3916 (1987).

    PubMed  Google Scholar 

  6. Goldstein J, Pollitt NS, Inouye M: Major cold shock protein ofEscherichia coli. Proc Natl Acad Sci USA 87: 283–287 (1990).

    PubMed  Google Scholar 

  7. Hajela RK, Horvath DP, Gilmour SJ, Thomashow MF: Molecular cloning and expression ofcor (Cold-Regulated) genes inArabidopsis thaliana. Plant Physiol 93: 1246–1252 (1990).

    Google Scholar 

  8. Henikoff S, Wallace JC: Detection of protein similarities using nucleotide sequence databases. Nucl Acids Res 16: 6191–6204 (1988).

    PubMed  Google Scholar 

  9. Horinouchi S, Fukusumi S, Ohshima T, Beppu T: Cloning and expression inEscherichia coli of two additional amylase genes of a strictly anaerobic thermophile,Dictyoglomus thermophilum, and their nucleotide sequences with extremely low guanine-plus-cytosine contents. Eur J Biochem 176: 243–253 (1988).

    PubMed  Google Scholar 

  10. Kiel JAKW, Boels JM, Beldman G, Venema G: Nucleotide sequence of theSynechococcus sp. PCC7942 branching enzyme gene (glgB): expression inBacillus subtilis. Gene 89: 77–84 (1990).

    Article  PubMed  Google Scholar 

  11. Kimura K, Kataoka S, Ishii Y, Takano T, Yamane K: Nucleotide sequence of the β-cyclodextrin glucanotransferase gene of alkalophilicBacillus sp. strain 1011 and similarity of its amino acid sequence to those of α-amylases. J Bact 169: 4399–4402 (1987).

    PubMed  Google Scholar 

  12. Kurkela S, Franck M: Cloning and characterization of a cold- and ABA-inducibleArabidopsis gene. Plant Mol Biol 15: 137–144 (1990).

    PubMed  Google Scholar 

  13. Matsuura Y, Kusunoki M, Harada W, Kakudo M: Structure and possible catalytic residues of Taka-amylase A. J Biochem 95: 697–702 (1984).

    PubMed  Google Scholar 

  14. Maxam AM, Gilbert W: Sequencing end-labelled DNA with base-specific chemical cleavages. Meth Enzymol 65: 499–560 (1980).

    PubMed  Google Scholar 

  15. Metz RJ, Allen LN, Cao TM, Zeman NW: Nucleotide sequence of an amylase gene fromBacillus megaterium. Nucl Acids Res 16: 5203 (1988).

    PubMed  Google Scholar 

  16. Mohapatra SS, Wolfraim L, Poole RJ, Dhindsa RS: Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa. Plant Physiol 89: 375–380 (1989).

    Google Scholar 

  17. Romeo T, Kumar A, Preiss J: Analysis of theEscherichia coli glycogen gene cluster suggests that catabolic enzymes are encoded among the biosynthetic genes. Gene 70: 363–376 (1988).

    Article  PubMed  Google Scholar 

  18. Sato N, Murata N: Temperature shift-induced responses in lipids in the blue-green alga,Anabaena variabilis. The central role of diacylmonogalactosylglycerol in thermoadaptation. Biochim Biophys Acta 619: 353–366 (1980).

    PubMed  Google Scholar 

  19. Sato N, Murata N: Studies on the temperature shift-induced desaturation of fatty acids in monogalactosyl diacylglycerol in the blue-green alga (cyanobacterium),Anabaena variabilis. Plant Cell Physiol 22: 1043–1050 (1981).

    Google Scholar 

  20. Sato N, Murata N: Lipid biosynthesis in the blue-green alga,Anabaena variabilis. II. Fatty acids and lipid molecular species. Biochim Biophys Acta 710: 279–289 (1982).

    Google Scholar 

  21. Schaffer MA, Fischer RL: Analysis of mRNAs that accumulate in response to low temperature identifies a thiol protease gene in tomato. Plant Physiol 87: 431–436 (1988).

    Google Scholar 

  22. Yamauchi D, Minamikawa T: Nucleotide sequence of cDNA for α-amylase from cotyledons of germinatingVigna mungo seeds. Nucl Acids Res 18: 4250 (1990).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, N. Cloning of a low-temperature-induced genelti2 from the cyanobacteriumAnabaena variabilis M3 that is homologous to α-amylases. Plant Mol Biol 18, 165–170 (1992). https://doi.org/10.1007/BF00018474

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018474

Key words

Navigation