Skip to main content
Log in

Experimental and numerical studies of the J-integral for a surface flaw

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Applied J-integral values for a surface cracked tensile panel are experimentally evaluated by measuring strain and displacement quantities along an instrumented contour located on the longitudinal symmetry plane. Nonlinear, 3-D, finite-element analyses are employed to obtain corresponding estimates of the contour and area integral contributions to a 3-D J-integral. Finite element results indicate that the area integral contribution is negligibly small on the symmetry plane; the fracture driving force is thus adequately characterized by the experimental contour values. Detailed comparisons of the experimental and numerical results (crack mouth opening displacement, J-values, and strains along the contour) reveal that the one-quarter symmetric, finite element model accurately predicts the panel response for overall (gauge length) strains approaching 1.6 times the material yield strain, beyond which the observed deformation patterns exhibited globally asymmetric shear bands.

Résumé

On évalue expérimentalement les valuers de l'intégrale J dans un panneau en traction fissuré en surface, en mesurant les dilatations et les déplacements suivant un contour instrumenté localisé le long du plan de symétrie longitudinale. On utilise une analyse non linéaire par éléments finis à trois dimensions afin d'obtenir des estimations de la manière dont les intégrales de contour et de surface contribuent à l'intégrale J à 3D.

Les résultats par éléments finis indiquent que la contribution de l'intégrale de surface est négligeable suivant le plan de symétrie; le déterminant de la rupture peut done être adéquatement décrit par les valeurs expérimentales relatives au contour.

Des comparaisons sur le détail des résultats expérimentaux et numériques révèlent qu'un modèle par éléments finis quart-symétriques peut prédire de manière sûre la réaction de la pièce par rapport à des dilatations globales de près de 1,6 fois la dilatation à la limite élastique du matériau, valeur au-delà de laquelle les configurations de la déformation observées font état de bandes de glissement globalement asymétriques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M.Parks, Computer Methods in Applied Mechanics and Engineering 12 (1977) 353–364.

    Article  Google Scholar 

  2. T.K.Hellen, International Journal for Numerical Methods in Engineering 9 (1975) 187–207.

    Google Scholar 

  3. H.G.deLorenzi, International Journal of Fracture 19 (1982) 183–193.

    Google Scholar 

  4. F.Z.Li, C.F.Shih, and A.Needleman, Engineering Fracture Mechanics 21 (1985) 405–421.

    Article  Google Scholar 

  5. C.E.Shih, B.Moran, and T.Nakamura, International Journal of Fracture 30 (1986) 79–102.

    Google Scholar 

  6. G.P.Nikishkov and S.N.Atluri, Engineering Fracture Mechanics 26 (1987) 851–867.

    Article  Google Scholar 

  7. G.P.Nikishkov and S.N.Atluri, International Journal for Numerical Methods in Engineering 24 (1987) 1801–1827.

    Google Scholar 

  8. J.R.Rice, Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  9. M.Amestoy, H.D.Bui, and R.Labbens, Mechanics Research Communications 8 (1981) 231–236.

    Article  Google Scholar 

  10. S.N.Atluri and M.Nakagaki, Engineering Fracture Mechanics 20 (1984) 209–244.

    Article  Google Scholar 

  11. K.Kishimoto, S.Akoi, and M.Sakata, Engineering Fracture Mechanics 13 (1980) 841–850.

    Article  Google Scholar 

  12. M.Sakata, S.Akoi, and K.Kishimoto, Engineering Fracture Mechanics 23 (1983) 187–200.

    Google Scholar 

  13. W.C.Carpenter, D.T.Read, and R.H.Dodds, International Journal of Fracture 31 (1986) 303–323.

    Google Scholar 

  14. T.K.Hellen and W.S.Blackburn, Engineering Computations 4 (1987) 2–14.

    Google Scholar 

  15. J.D.Eshelby in Inelastic Behavior of Solids, M.F.Kanninen et al. (eds), McGraw-Hill, NY (1970).

    Google Scholar 

  16. G.P.Cherepanov, Journal of Applied Mathematics and Mechanics 31 (1967) 503–512.

    Article  Google Scholar 

  17. W.S.Blackburn, International Journal of Fracture 8 (1972) 343–346.

    Google Scholar 

  18. W.S.Blackburn, T.K.Hellen, and A.D.Jackson, International Journal of Fracture 13 (1977) 183–200.

    Google Scholar 

  19. W.S.Blackburn, International Journal of Fracture 28 (1985) R73-R78.

    Google Scholar 

  20. R.H.Dodds, International Journal of Fracture 33 (1987) R7-R15.

    Google Scholar 

  21. R.H.Dodds, W.C.Carpenter, and W.A.Sorem, Engineering Fracture Mechanics 29 (1988) 275–285.

    Article  Google Scholar 

  22. R.H. Dodds, D.T. Read, and G.W. Wellman, Fracture Mechanics: Fourteenth Symposium-Volume I: Theory and Analysis, ASTM STP 791, J.C. Lewis and G. Sines (eds.) (1983) I-520–I-542.

  23. R.H.Dodds, and D.T.Read, International Journal of Fracture 28 (1985) 39–54.

    Google Scholar 

  24. R.Dodds and L.Lopez, International Journal for Engineering Computations 3 (1986) 18–26.

    Google Scholar 

  25. “PATRAN II User's Mannual,” PDA Engineering, Software Products Divison, Santa Ana, Ca.

  26. I.S.Raju and J.C.Newman, Engineering Fracture Mechanics 11 (1979) 817–829.

    Article  Google Scholar 

  27. R.S.Barsoum, International Journal for Numerical Methods in Engineering 11 (1977) 85–98.

    Google Scholar 

  28. R.Dodds, Computers and Structures 5 (1987) 767–779.

    Article  Google Scholar 

  29. J.C.Simo and R.L.Taylor, Computer Methods in Applied Mechanics and Engineering 48 (1985) 1101–1118.

    Google Scholar 

  30. J.Barlow, International Journal for Numerical Methods in Engineering 10 (1976) 243–251.

    Google Scholar 

  31. C.F.Shih, H.D.deLorenzi, and M.D.German, International Journal of Fracture 12 (1976) 647–651.

    Google Scholar 

  32. G.W.Wellman, S.T.Rolfe, and R.H.Dodds, Welding Research Council Bulletin 299 (1984) 15–25.

    Google Scholar 

  33. C.F.Shih and M.D.German, International Journal of Fracture 17 (1981) 27–43.

    Google Scholar 

  34. D.M.Parks and Y.Wang, in Proceedings of the Symposium on Analytical, Numerical and Experimental Aspects of Three-Dimensional Fracture, ASME, Berkeley, CA. (June 20–24, 1988) 19–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodds, R.H., Read, D.T. Experimental and numerical studies of the J-integral for a surface flaw. Int J Fract 43, 47–67 (1990). https://doi.org/10.1007/BF00018126

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018126

Keywords

Navigation