Skip to main content
Log in

Application of dynamic shear crack models to the study of the earthquake faulting process

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The earthquake faulting process can be modelled as propagating two or three dimensional shear cracks. Since analytical methods cannot be used to study finite cracks, several numerical approaches to this problem have been taken, of which the numerical boundary integral method is here described in detail. The process of crack growth can be determined by the use of a fracture criterion. Since the material properties such as fracture strength and frictional properties vary over the surfaces of real faults, two types of complex faulting models-the “barrier” model and the “asperity” model-are discussed in the context of seismology.

Résumé

Un processus de glissement dans une faille souterraine peut être modélisé sous forme de fissure de cisaillement à 2 ou 3 dimensions en cours de propagation. Comme les méthodes analytiques ne peuvent pas être utilisées pour des fissures finies, on a considéré diverses approches numériques à ce problème parmi laquelle la méthode des intégrales numériques aux limites est décrite en détail. Le processus de croissance d'une fissure peut être déterminé par l'utilisation d'un critère de rupture. Comme les propriétés du matériau telles que la résistance à la rupture ou les propriétés de friction varient sur les surfaces des failles réelles, deux types de modèles complexes de glissement, le modèle “Barrière” et le modèle “Aspérité”, sont discutés dans le contexte de la seismologie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Burridge and L. Knopoff, Bulletin of the Seismological Society of America 54 (1964) 1875–1888.

    Google Scholar 

  2. A.T. de Hoop, Representation Theorems for the Displacement in an Elastic Solid and their Applications to Elastodynamic Diffraction Theory”, D.Sc. thesis, Technische Hogeschool, Delft (1958).

  3. B.V. Kostrov, Journal of Applied Mathematics and Mechanics 28 (1964) 1077–1087.

    Google Scholar 

  4. B.V. Kostrov, Journal of Applied Mathematics and Mechanics 30 (1966) 1241–1248.

    Google Scholar 

  5. R. Burridge and J.R. Willis, Proceedings of the Cambridge Philosophical Society 66 (1969) 443–468.

    Google Scholar 

  6. R. Burridge and G.S. Halliday, Geophysical Journal of the Royal Astronomical Society 25 (1971) 261–283.

    Google Scholar 

  7. R. Burridge, Geophysical Journal of the Royal Astronomical Society 35 (1979) 439–455.

    Google Scholar 

  8. B.V. Kostrov, Journal of Applied Mathematics and Mechanics 38 (1974) 551–560.

    Google Scholar 

  9. R. Burridge, Philosophical Transactions of the Royal Society of London A 265 (1969) 353–381.

    Google Scholar 

  10. A.C. Palmer and J.R. Rice, Proceedings of the Royal Society of London A 332 (1973) 527–548.

    Google Scholar 

  11. D.J. Andrews, Journal of Geophysical Research 81 (1976a) 5679–5687.

    Google Scholar 

  12. A.F. Fossum and L.B. Freund, Journal of Geophysical Research 80 (1975) 3343–3347.

    Google Scholar 

  13. S. Das and K. Aki, Journal of the Royal Astronomical Society 50 (1977) 643–668.

    Google Scholar 

  14. D.J. Andrews, Bulletin of the Seismological Society of America, submitted (1984).

  15. R. Madariaga, Bulletin of the Seismological Society of America 66 (1976) 639–666.

    Google Scholar 

  16. S.M. Day, Three dimensional finite difference simulation of fault dynamics, Final Report SSS-R-80–4295, S-Cubed, La Jolla, CA (1979).

  17. S.M. Day, Bulletin of the Seismological Society of America 72 (1982) 705–727.

    Google Scholar 

  18. R.B. Burridge and R. Moon, Geophysical Journal of the Royal Astronomical Society 67 (1981) 325–342.

    Google Scholar 

  19. S. Das, Geophysical Journal of the Royal Astronomical Society 62 (1980) 591–604.

    Google Scholar 

  20. S. Das, Geophysical Journal of the Royal Astronomical Society 67 (1981) 375–393.

    Google Scholar 

  21. S.M. Day, Bulletin of the Seismological Society of America 72 (1982) 1881–1902.

    Google Scholar 

  22. J. Virieux and R. Madariaga, Bulletin of the Seismological Society of America 72 (1982) 345–369.

    Google Scholar 

  23. S. Das and K. Aki, Journal of Geophysical Research 82 (1977) 5658–5670.

    Google Scholar 

  24. R. Madariaga, Journal of Geophysical Research 84 (1979) 2243–2250.

    Google Scholar 

  25. R. Madariaga, Proceedings of the International School of Physics (1983) 1–44.

  26. R.J. Archuleta, Journal of Geophysical Research 89 (1983) 4559–4585.

    Google Scholar 

  27. S. Das, “A Numerical Study of Rupture Propagating and Earthquake Source Mechanisms”, Sc.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (1976).

  28. C.C. Chao, Journal of Applied Mechanics 27 (1960) 559–567.

    Google Scholar 

  29. P.G. Richards, Bulletin of the Seismological Society of America 69 (1979) 947–956.

    Google Scholar 

  30. J.D. Achenbach, in Mechanics Today 1, Pergamon Press, New York (1973) 1–55.

    Google Scholar 

  31. L.B. Freund, Journal of Geophysical Research 84 (1979) 2199–2209.

    Google Scholar 

  32. R.J. Archuleta and S.M. Day, Bulletin of the Seismological Society of America 70 (1980) 671–689.

    Google Scholar 

  33. L.B. Freund, 9th U.S. National Congress on Applied Mechanics (1982).

  34. S. Das, Bulletin of the Seismological Society of America 72 (1982) 1911–1926.

    Google Scholar 

  35. M.I. Huseini, D.B. Jovanovich, M.J. Randall and L.B. Freund, Geophysical Journal of the Royal Astronomical Society 43 (1975) 367–385.

    Google Scholar 

  36. S. Das and B.V. Kostrov, Journal of Geophysical Research 88 (1983) 4277–4288.

    Google Scholar 

  37. R.D. Mindlin, Journal of Applied Mechanics 16 (1949) 259–268.

    Google Scholar 

  38. S. Das and B.V. Kostrov, Geophysical Journal of the Royal Astronomical Society (1985) in press.

  39. R. Burridge, in Dynamic Waves in Civil Engineering, Wiley (1971) 15–31.

  40. J.R. Rice, Physics of the Earth's Interior XXVIII (1980) 555–649.

    Google Scholar 

  41. R. Madariaga, SIAM-AMS Proceedings 12 (1979) 59–77.

    Google Scholar 

  42. R. Dmowska and J.R. Rice, in Continuum Theories in Solid Earth Physics, Elsevier Publishing Company (1985) 187–255.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S. Application of dynamic shear crack models to the study of the earthquake faulting process. Int J Fract 27, 263–276 (1985). https://doi.org/10.1007/BF00017972

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017972

Keywords

Navigation