Skip to main content
Log in

Slip-line field solutions for three-point notch-bend specimens

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The slip-line field solutions for three-point bend specimens are reviewed for both deep and shallow notches. Plastic constraint factors, hydrostatic stress at the notch root and rotation constant to enable the crack upp opening displacement to be determined are given for a wide range of notch geometries. These values can be used in the fracture analysis of low strength metal specimens.

Résumé

On passe en revue les solutions décrivant les champs de bandes de glissement dans des éprouvettes de flexion sur trois appuis, dans les deux cas d'entailles peu profondes. On fournit pour une large gamme de géométries d'entaille les facteurs de retraint plastique, les contraintes hydrostatiques à la racine de l'entaille et la constante de rotation permettant de déterminer le COD à l'extrémité de la fissure. Ces valeurs peuvent être utilisées pour l'analyse de la rupture des éprouvettes de métaux à faible résistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Green and B.B. Hundy, Journal of the Mechanics and Physics of Solids 4 (1956) 128–44.

    Article  Google Scholar 

  2. A.P. Green, Journal of the Mechanics and Physics of Solids 4 (1956) 259–68.

    Article  Google Scholar 

  3. J.M. Alexander and T.J. Komoly, Journal of the Mechanics and Physics of Solids 10 (1962) 265–75.

    Article  Google Scholar 

  4. J.F. Knott, Journal of the Iron and Steel Institute 204 (1966) 104–11.

    Google Scholar 

  5. D.J.F. Ewing, Journal of the Mechanics and Physics of Solids 16 (1968) 205–13.

    Article  Google Scholar 

  6. British Standards, Methods for crack opening displacement (COD) testing, BS 5762 (1979).

  7. G. Matsoukas, B. Cotterell and Y.-W. Mai, International Journal of Fracture 26 (1984) R49-R53.

    Google Scholar 

  8. S.-X. Wu, Engineering Fracture Mechanics 18 (1983) 83–95.

    Article  Google Scholar 

  9. L.-H. Lin, T.L. Anderson, R.de Wit and M.G. Dawes, International Journal of Fracture 20 (1982) R3-R7.

    Google Scholar 

  10. G.A. Clarke, W.R. Andrews, J.A. Begley, J.K. Donald, G.T. Embley, J.D. Landes, D.E. McCabe and J.H. Underwood, Journal of Testing and Evaluation 7 (1979) 49–56.

    Google Scholar 

  11. British Standard, Guidance on some methods for the derivation of acceptance levels for defects in fusion welded joints, PD 6493 (1980).

  12. M.S. Kamath, The COD design curve: an assessment of validity using wide plate tests, Welding Institute Report 71/1978/E.

  13. C.G. Chipperfield, Proceedings, Specialists Meeting in Elasto-Plastic Fracture Mechanics, OECD Nuclear Energy Agency Daresbury, Vol. 2, Paper 15.

  14. B. Cotterell, Q.-F. Li, D.-Z. Zhang and Y.-W. Mai, Engineering Fracture Mechanics 24 (1986) 837–842.

    Google Scholar 

  15. G. Matsoukas, B. Cotterell and Y.-W. Mai, Engineering Fracture Mechanics 23 (1986) 661–665.

    Article  Google Scholar 

  16. H.E. Thompson and J.F. Knott, Fracture Control of Engineering Structures. ECF 6 (1986).

  17. P.W. Bridgman, Large Plastic Flow and Fracture, McGraw Hill, New York (1952).

    Google Scholar 

  18. K.E. Puttick, Philosophical Magazine, Ser. A, 4 (1959) 964–69.

    Google Scholar 

  19. F.A. McClintock, Journal of Applied Mechanics 35 (1968) 363.

    Google Scholar 

  20. G. Matsoukas, B. Cotterell and Y.-W. Mai, Engineering Fracture Mechanics 23 (1986) 661–65.

    Article  Google Scholar 

  21. A.P. Green, Quarterly Journal of Mechanics and Applied Mathematics 6 (1953) 223–39.

    Google Scholar 

  22. A. Shindo and Y. Tomita, Bulletin of the Japan Society for Mechanical Engineering 15 (1972) 11–20.

    Google Scholar 

  23. G. Matsoukas, B. Cotterell and Y.-W. Mai, Journal of the Mechanics and Physics of Solids 34 (1986) 499–510.

    Article  Google Scholar 

  24. D.J.F. Ewing, Doctoral Thesis, Cambridge University (1968).

  25. D.J.F. Ewing, Journal of the Mechanics and Physics of Solids 15 (1967) 105–114.

    Article  Google Scholar 

  26. I.F. Collins, Proceeding of the Royal Society, A303 (1968) 307.

    Google Scholar 

  27. P. Dewhurst and I.F. Collins, International Journal for Numerical Methods in Engineering 7 (1973) 357–378.

    Google Scholar 

  28. W. Johnson, R. Sowerby and R.D. Venter, Plane Strain Slip Line Fields for Metal Deformation Processes, Pergamon Press, Oxford (1982).

    Google Scholar 

  29. S.-X. Wu, Y.-W. Mai and B. Cotterell, International Journal of Mechanical Sciences 29 (1987) 557–564.

    Article  Google Scholar 

  30. A. Shindo and Y. Tomita, Memoirs of the Faculty of Engineering, Tobe University, No. 20 (1974) 59–67.

  31. J.F.W. Bishop, Journal of the Mechanics of Physics of Solids 2 (1953) 43–53.

    Article  Google Scholar 

  32. NAG Fortran library routine document-CO5MBF.

  33. ASTM Standard test for J 1c a measure of fracture toughness, E813-81.

  34. British Standards, Methods for notched bar tests, The Charpy V-notch impact test on metals, BS 131: Part 2 (1972).

  35. J.N. Robinson and A.S. Tetelman, International ofurnal of Fracture 11 (1975) 453–469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SX., Cotterell, B. & Mai, YW. Slip-line field solutions for three-point notch-bend specimens. Int J Fract 37, 13–29 (1988). https://doi.org/10.1007/BF00017820

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017820

Keywords

Navigation