Skip to main content
Log in

Influence of grazer type and abundance on plant-herbivore interactions in streams

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Grazer-periphyton interactions were investigated in 11 laboratory streams holding a range of densities of three herbivore taxa during a 32-d experiment. Effects of grazers on algae were strongest with Dicosmoecus gilvipes caddisflies, intermediate with Juga silicula snails, and weakest with Baetis spp. mayflies. Algal standing crop, export, and gross primary production declined logarithmically with increasing grazer density. Algal turnover rate, however, increased with grazer abundance. At high densities of all grazers, responses in most algal parameters converged, suggesting that high grazing pressure, regardless of taxon, will similarly affect periphyton. Growth of both Dicosmoecus caddisflies and Juga snails was density-dependent, with the highest growth rates occurring at the lowest densities. Caddisflies displayed high growth rates but low efficiency in resource use. Snails had lower growth rates but were more efficient in resource use. The coexistence of Dicosmoecus and Juga, or other competing herbivores, in natural streams may be related to these fundamental differences in life history strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D., 1983. Predator-prey relationships in streams. In J. R. Barnes & G. W. Minshall (eds), Stream Ecology. Plenum, New York: 191–229.

    Google Scholar 

  • Belovsky, G. E., 1986. Generalist herbivore foraging and its role in competitive interactions. Am. Zool. 26: 51–69.

    Google Scholar 

  • Belsky, A. J., 1986. Does herbivory benefit plants? A review of the evidence. Am. Nat. 127: 870–892.

    Article  Google Scholar 

  • Calow, P., 1981. Invertebrate biology—a functional approach. Croom Helm, London, 183 pp.

    Google Scholar 

  • Calow, P. & C. R. Fletcher, 1972. A new radiotracer technique involving 14C and 51Cr, for estimating the assimilation efficiencies of aquatic, primary consumers. Oecologia 9: 155–170.

    Google Scholar 

  • DeNicola, D. M. & C. D. McIntire, 1991. Effects of hydraulic refuge and irradiance on grazer-periphyton interactions in laboratory streams. J. N. Am. benthol. Soc. 10: 251–262.

    Google Scholar 

  • Feminella, J. W. & V. H. Resh, 1990. Hydrologic influences, disturbance, and intraspecific competition in a stream caddisfly population. Ecology 71: 2083–2094.

    Google Scholar 

  • Feminella, J. W. & V. H. Resh, 1991. Herbivorous caddisflies, macroalgae, and epilithic microalgae: dynamic interactions in a stream grazing system. Oecologia 87: 247–256.

    Article  Google Scholar 

  • Furnish, J. P., 1989. Factors affecting the growth, production, and distribution of the stream snail, Juga silicula (Gould). Ph.D. dissertation, Oregon State University, Corvallis.

    Google Scholar 

  • Gregory, S. V., 1980. Effects of light, nutrients, and grazing on periphyton communities in streams. Ph. D. dissertation, Oregon State University, Corvallis.

    Google Scholar 

  • Gregory, S. V., 1983. Plant-herbivore interactions in stream systems. In J. R. Barnes & G. W. Minshall (eds), Stream Ecology. Plenum, New York: 157–189.

    Google Scholar 

  • Hart, D. D., 1987. Experimental studies of exploitative competition in a grazing stream insect. Oecologia 73: 41–47.

    Google Scholar 

  • Hart, D. D., S. L. Kohler & R. G. Carlton, 1991. Harvesting of benthic algae by territorial grazers: the potential for prudent predation. Oikos 60: 329–335.

    Google Scholar 

  • Harvey, B. C. & W. R. Hill, 1991. Effects of snails and fish on benthic invertebrate assemblages in a headwater stream. J. N. Am. benthol. Soc. 10: 263–270.

    Google Scholar 

  • Hawkins, C. P. & J. K. Furnish, 1987. Are snails important competitors in stream ecosystems? Oikos 49: 209–220.

    Google Scholar 

  • Hill, W. R. & A. W. Knight, 1988. Concurrent grazing effects of two stream insects on periphyton. Limnol. Oceanogr. 33: 15–26.

    Google Scholar 

  • Lamberti, G. A., L. R. Ashkenas, S. V. Gregory & A. D. Steinman, 1987a. Effects of three herbivores on periphyton communities in laboratory streams. J. N. Am. benthol. Soc. 6: 92–104.

    Google Scholar 

  • Lamberti, G. A., J. W. Feminella & V. H. Resh, 1987b. Herbivory and intraspecific competition in a stream caddisfly population. Oecologia 73: 75–81.

    Google Scholar 

  • Lamberti, G. A., S. V. Gregory, L. R. Ashkenas, A. D. Steinman & C. D. McIntire, 1989. Productive capacity of periphyton as a determinant of plant-herbivore interactions in streams. Ecology 70: 1840–1856.

    Google Scholar 

  • Lamberti, G. A. & J. W. Moore, 1984. Aquatic insects as primary consumers. In V. H. Resh & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger, New York: 164–195.

    Google Scholar 

  • Lamberti, G. A. & V. H. Resh, 1979. Substrate relationships, spatial distribution patterns, and sampling variability in a stream caddisfly population. Envir. Ent. 8: 561–567.

    Google Scholar 

  • Lamberti, G. A. & V. H. Resh, 1983. Stream periphyton and insect herbivores: an experimental study of grazing by a caddisfly population. Ecology 64: 1124–1135.

    Google Scholar 

  • Li, J. L., 1990. Foraging behavior of the limnephilid caddisfly Dicosmoecus gilvipes and co-occurring herbivores in streams of the Pacific Northwest. Ph. D. dissertation, Oregon State University, Corvallis.

    Google Scholar 

  • Li, J. L. & S. V. Gregory, 1989. Behavioral changes in the herbivorous caddisfly Dicosmoecus gilvipes (Limnephilidae). J. N. Am. benthol. Soc. 8: 250–259.

    Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The theory of island biogeography. Princeton University Press, New Jersey, 203 pp.

    Google Scholar 

  • Martin, I. D., W. D. Taylor & D. R. Barton, 1991. Experimental analysis of density dependent effects on two caddisflies and their algal food. J. N. Am. benthol. Soc. 10: 404–418.

    Google Scholar 

  • McAuliffe, J. R., 1983. Competition, colonization patterns, and disturbance in stream benthic communities. In J. R. Barnes & G. W. Minshall (eds), Stream Ecology. Plenum, New York: 137–156.

    Google Scholar 

  • McElravy, E. P., G. A. Lamberti & V. H. Resh, 1989. Year-to-year variation in the aquatic macroinvertebrate fauna of a northern California stream. J. N. Am. benthol. Soc. 8: 51–63.

    Google Scholar 

  • McIntire, C. D., 1973. Periphyton dynamics in laboratory streams: a simulation model and its implications. Ecol. Monogr. 43: 399–420.

    Google Scholar 

  • McIntire, C. D., 1993. Historical and other perspectives of laboratory stream research. In G. A. Lamberti & A. D. Steinman (eds), Research in artificial streams: applications, uses, and abuses. J. N. Am. benthol. Soc. 12: 318–323.

  • McNaughton, S. J., 1986. On plants and herbivores. Am. Nat. 128: 765–770.

    Article  Google Scholar 

  • Mulholland, P. J., J. D. Newbold, J. W. Elwood & C. L. Horn, 1983. The effect of grazing intensity on phosphorous spiralling in autotrophic streams. Oecologia 58: 358–366.

    Google Scholar 

  • Mulholland, P. J., A. D. Steinman, A. V. Palumbo & J. W. Elwood, 1991. Role of nutrient cycling and herbivory in regulating periphyton communities in laboratory streams. Ecology 72: 966–982.

    Google Scholar 

  • Paige, K. N. & T. G. Whitham, 1987. Overcompensation in response to mammalian herbivory: the advantage of being eaten. Am. Nat. 129: 407–416.

    Article  Google Scholar 

  • Pandian, T. J. & M. P. Marian, 1986. An indirect procedure for the estimation of assimilation efficiency of aquatic insects. Freshwat. Biol. 16: 93–98.

    Google Scholar 

  • Pianka, E. R., 1970. On r- and K-selection. Am. Nat. 104: 592–597.

    Article  Google Scholar 

  • Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–170.

    Google Scholar 

  • Resh, V. H., 1982. Age structure alteration in a caddisfly population after habitat loss and recovery. Oikos 38: 280–284.

    Google Scholar 

  • Resh, V. H., 1983. Spatial differences in the distribution of benthic macroinvertebrates along a springbrook. Aquat. Insects 5: 193–200.

    Google Scholar 

  • Resh, V. H. & D. M. Rosenberg, 1989. Spatial-temporal variability and the study of aquatic insects. Can. Ent. 121: 941–963.

    Google Scholar 

  • Siegfried, C. A. & A. W. Knight, 1977. The effects of washout in a Sierra foothill stream. Am. Midl. Nat. 98: 200–207.

    Google Scholar 

  • Statzner, B., J. A. Gore & V. H. Resh, 1988. Hydraulic stream ecology: observed patterns and potential applications. J. N. Am. benthol. Soc. 7: 307–360.

    Google Scholar 

  • Steinman, A. D., in press. Effects of grazers on freshwater benthic algae. In R. J. Stevenson, M. L. Bothwell & R. L. Lowe (eds), Benthic Algal Ecology in Freshwater Ecosystems. Academic Press, New York.

  • Steinman, A. D. & C. D. McIntire, 1986. Effects of current velocity and light energy on the structure of periphyton assemblages in laboratory streams. J. Phycol. 22: 352–361.

    Google Scholar 

  • Steinman, A. D., C. D. McIntire, S. V. Gregory, G. A. Lamberti & L. R. Ashkenas, 1987a. Effects of herbivore type and density on taxonomic structure and physiognomy of algal assemblages in laboratory streams. J. N. Am. benthol. Soc. 6: 175–188.

    Google Scholar 

  • Steinman, A. D., C. D. McIntire & R. R. Lowry, 1987b. Effects of herbivore type and density on chemical composition of algal assemblages in laboratory streams. J. N. Am. benthol. Soc. 6: 189–197.

    Google Scholar 

  • Steinman, A. D., P. J. Mulholland & D. B. Kirschtel, 1991. Interactive effects of nutrient reduction and herbivory on biomass, taxonomic structure, and P uptake in lotic periphyton communities. Can. J. Fish. aquat. Sci. 48: 1951–1959.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1968. A practical handbook of seawater analysis. (Bulletin 167). Fisheries Research Board of Canada, Ottawa, 311 pp.

    Google Scholar 

  • Sumner, W. T. & C. D. McIntire, 1982. Grazer-periphyton interactions in laboratory streams. Arch. Hydrobiol. 93: 135–157.

    Google Scholar 

  • Wallace, J. B. & R. W. Merritt, 1980. Filter-feeding ecology of aquatic insects. Ann. Rev. Ent. 25: 103–132.

    Article  Google Scholar 

  • Wiegert, R. G. & D. F. Owen, 1971. Trophic structure, available resources and population density in terrestrial vs. aquatic ecosystems. J. theor. Biol. 30: 69–81.

    PubMed  Google Scholar 

  • Wiggins, G. B., 1977. Larvae of the North American caddisfly genera (Trichoptera). University of Toronto Press, Ontario, 401 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Department of Fisheries and Wildlife

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamberti, G.A., Gregory, S.V., Ashkenas, L.R. et al. Influence of grazer type and abundance on plant-herbivore interactions in streams. Hydrobiologia 306, 179–188 (1995). https://doi.org/10.1007/BF00017689

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017689

Key words

Navigation