Skip to main content
Log in

Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Leaf decomposition of the exotic evergreen Eucalyptus globulus (eucalyptus), and three native deciduous tree species, Alnus glutinosa (alder), Castanea sativa (chestnut) and Quercus faginea (oak), was compared in a second order stream in Central Portugal. Changes in dry weight, nitrogen and polyphenolic compounds and microbial colonization were periodically assessed for three months.

Negative exponential curves fit the leaf weight loss with time for all leaf species. Mass loss rate was in the order alder (K = 0.0161) > chestnut (K = 0.0079) > eucalyptus (K = 0.0068) > oak (K = 0.0037). Microbial colonization followed the same pattern as breakdown rates. Evidence of fungal colonization was observed in alder after 3 days in the stream, whereas it took 21 days in oak leaves to have fungal colonization. Fungal diversity was leaf species-dependent and increased with time. In all cases, percent nitrogen per unit leaf weight increased, at least, at the initial stages of decay while soluble polyphenolics (expressed as percentage per unit leaf weight) decreased rapidly in the first month of leaves immersion.

Intrinsic factors such as nitrogen and polyphenolic content may explain differences in leaf decomposition. The possible incorporation of eucalyptus litter into secondary production in a reasonable time span is suggested, although community balance and structure might be affected by differences in allochthonous patterns determined by eucalyptus monocultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelho, M. & M. A. S. Graça, 1996. Effects of eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324: 195–204.

    Google Scholar 

  • Arsuffi, T. L. & K. Suberkropp, 1984. Leaf processing capabilities of aquatic hyphomycetes: interspecific differences and influence on shredder feeding preferences. Oikos 42: 144–154.

    Google Scholar 

  • Bärlocher, F., 1990. Factors that delay colonization of fresh alder leaves by aquatic hyphomycetes. Arch. Hydrobiol. 119: 249–255.

    Google Scholar 

  • Bärlocher, F., 1991. Fungal colonization of fresh and dried leaves in the River Teign (Devon, England). Nova Hedwigia 52: 349–357.

    Google Scholar 

  • Bärlocher, F., 1992. Community organization. In F. Bärlocher, (ed.), The Ecology of Aquatic Hyphomycetes. Ecological Studies 94. Springer-Verlag. Berlin: 39–69.

    Google Scholar 

  • Bärlocher, F. & J. J. Oertli, 1978. Inhibitors of aquatic hyphomycetes in dead conifer needles. Mycologia 70: 964–974.

    Google Scholar 

  • Bärlocher, F. & M. Schweizer, 1983. Effects of leaf size and decay rate on colonization by aquatic hyphomycetes. Oikos 41: 205–210.

    Google Scholar 

  • Bärlocher, F., C. Canhoto & M. A. S. Graga, 1995. Fungal colonization of alder and eucalypt leaves in two streams in Central Portugal. Arch. Hydrobiol. 133: 457–470.

    Google Scholar 

  • Benfield, E. F., D. S. Jones & M. F. Patterson, 1977. Leaf pack processing in a pastureland stream. Oikos 29: 99–103.

    Google Scholar 

  • Bird, G. A. & N. K. Kaushik, 1992. Invertebrate colonization and processing of maple leaf litter in a forested and agricultural reach of a stream. Hydrobiologia 234: 65–77.

    Google Scholar 

  • Boesch, D. F., 1977. Application of numerical classification in ecological investigation of water. Virginia Institute of Marine Science, Special Report, No 77, 113 pp.

  • Boling, R. H., E. D. Goodman, J. A. van Sickle, J. O. Zimmer, K. W. Cummins, R. C. Petersen & S. R. Reice, 1975. Toward a model of detritus processing in a woodland stream. Ecology 56: 141–151.

    Google Scholar 

  • Boulton, A. J., 1991. Eucalypt leaf decomposition in an intermittent stream in southeastern Australia. Hydrobiologia 211: 123–136.

    Google Scholar 

  • Bunn, S. E., 1986. In P. DeDeckker & W. W. Williams (eds), Origin and fate of organic matter in australian upland streams. Limnology in Australia. CSIRO, Melbourne: 277–291.

    Google Scholar 

  • Bunn, S. E., 1988. Processing of leaf litter in two northern jarrah forest streams. Western Australia: l. Seasonal differences. Hydrobiologia 162: 201–210.

    Google Scholar 

  • Campbell, I. C. & L. Fuchshuber, 1995. Polyphenols, condensed tannins, and processing rates of tropical and temperate leaves in an Australian stream. J. N. Am. Benthol. Soc. 14: 174–182.

    Google Scholar 

  • Canhoto, C. & M. A. S. Graga, 1992. Importância das folhas de eucalipto na alimentação de detritívoros aquáticos em ribeiros da Zona Centro de Portugal. Actas do V Congresso Ibérico de Entomologia I: 473–482.

    Google Scholar 

  • Canhoto, C., M. A. S. Graça, 1995. Food value of introduced eucalypt leaves for a Mediterranean stream detritivore: Tipula lateralis. Freshwat. Biol. 34: 209–214.

    Google Scholar 

  • Chamier, A.-C., 1987. Effects of pH on microbial degradation of leaf litter in seven streams of the English Lake District. Oecologia 71: 491–500.

    Google Scholar 

  • Chamier, A.-C., 1992. Water chemistry. In F. Bärlocher (ed.), The Ecology of Aquatic Hyphomycetes. Ecological Studies 94, Springer-Verlag, Berlin: 152–172.

    Google Scholar 

  • Chamier, A.-C. & P. A. Dixon, 1982. Pectinases in leaf degradation by aquatic hyphomycetes: the enzymes and leaf maceration. J. Gen. Microbiol. 128: 2469–2483.

    Google Scholar 

  • Cortes, R. M. V., M. A. S. Graça & Monzón, 1994. Replacement of alder by eucalypt along two streams with different characteristics: differences on decay rates and consequences to the stream functioning. Verh. Int. Ver. Limnol. 25: 1697–1702.

    Google Scholar 

  • Cones, R., M. A. S. Graça, J. V. Vingada & S. V. Oliveira, 1995. Stream typology and dynamics of leaf processing. Ann. Limnol. 31: 119–131.

    Google Scholar 

  • Cummins, K. W., 1974. Structure and function of stream ecosystems. Bioscience 24: 631–641.

    Google Scholar 

  • Cummins, K. W., M. A. Wilzbach, D. M. Gates, J. B. Penry & W. B. Talaiferro, 1989. Shredders and riparian vegetation. Bioscience 39: 24–30.

    Google Scholar 

  • Enríquez, S., C. M. Duarte & K. Sand-Jensen, 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94: 457–471.

    Google Scholar 

  • Escudero, A., S. Sanz, J. R. Del Arco & M. V. Garrido, 1991. Leaf litter decomposition in a montain stream. Verh. Int. Limnol. 24: 1987–1993.

    Google Scholar 

  • Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75: 1807–1817.

    Google Scholar 

  • Graça, M. A. S. & A. P. Pereira, 1995. The degradation of pine needles in a Mediterranean stream. Arch. Hydrobiol. 134: 119–128.

    Google Scholar 

  • Herbst, G. N., 1982. Effects of leaf type on the consumption rates of aquatic detritivores. Hydrobiologia 89: 77–87.

    Google Scholar 

  • Hill, B. H., T. J. Gardner, O. F. Ekisola & G. M. K. Henebry, 1992. Microbial use of leaf litter in prairie streams. J. N. Am. Benthol. Soc: 11: 11–19.

    Google Scholar 

  • Imbert, J. B. & J. Pozo, 1989. Breakdown of four leaf litter species and associated fauna in a basque country forested stream. Hydrobiologia 182: 1–14.

    Article  Google Scholar 

  • Kaushik, N. K. & H. B. Hynes, 1971. The fate of dead leaves that fall into streams. Arch. Hydrobiol. 68: 465–515.

    Google Scholar 

  • Martin, J. S. & M. M. Martin, 1982. Tannin assay in ecological studies: lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54: 205–211.

    Google Scholar 

  • Mellilo, J. M., J. D. Aber & J. F. Mauratore, 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621–626.

    Google Scholar 

  • Mellilo, J. M., R. J. Naiman, J. D. Aber & A. E. Linkins, 1984. Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bull. Mar. Sci. 35: 341–356.

    Google Scholar 

  • Merritt, R. W. & D. L. Lawson, 1992. The role of leaf litter macroinvertebrates in stream-floodplain dynamics. Hydrobiologia 248: 65–77.

    Google Scholar 

  • Ormerod, S. J., S. D. Rundle, E. C. Lloyd & A. A. Douglas, 1993. The influence of riparian management on the habitat structure and macroinvertebrate communities of upland streams draining plantation forests. J. Appl. Ecol. 30: 13–24.

    Google Scholar 

  • O'Keefe, M. A. & P. S. Lake, 1987. The decomposition of pine, eucalypt and acacia litter in a small upland victorian stream. Bull. Aust. Limnol. 11: 15–32.

    Google Scholar 

  • Paiva, J., 1992. As plantacións de eucaliptos e a flora e fauna portuguesa. Cadernos da Area de Ciencias Biolóxicas. Seminário sobre os “Aspectos biolóxicos do cultivo do eucalipto en Galicia” 4: 71–84.

    Google Scholar 

  • Pattee, E., C. Bernard & S. Mourelatos, 1986. La décomposition des feuilles mortes dans le réseau fluvial du Rhône: influence du milieu et principaux agents responsables. Revue Fr. Sci. Eau 5: 45–74.

    Google Scholar 

  • Petersen, R. C. & K. W. Cummins, 1974. Leaf pack processing in a woodland stream. Freshwat. Biol. 4: 343–368.

    Google Scholar 

  • Pozo, J., 1993. Leaf litter procesing of alder and eucalyptus in the Agüera stream system (North Spain) I. Chemical changes. Arch. Hydrobiol. 127: 299–317.

    Google Scholar 

  • Reice, S. R., 1974. Environmental patchiness and the breakdown of leaf litter in a woodland stream. Ecology 55: 1271–1282.

    Google Scholar 

  • Reice, S. R., 1977. The role of animal associations and current velocity in sediment-specific leaf litter decomposition. Oikos 29: 357–365.

    Google Scholar 

  • Rosset, J., F. Bärlocher & J. J. Oertli, 1982. Decomposition of conifer needles and deciduous leaves in two Black Forest and two Swiss Jura streams. Int. Rev. Ges. Hydrobiol. 67: 695–711.

    Google Scholar 

  • Sedell, J. R., F. J. Triska & N. S. Triska, 1975. The processing in two contrasting beech forest streams: effects of physical and biotic factors on litter breakdown. Arch. Hydrobiol. 96: 448–474.

    Google Scholar 

  • Smock, L. A. & C. M. MacGregor, 1988. Impact of the American chestnut blight on aquatic shredding macroinvertebrates. J. N. Am. Benthol. Soc. 7: 212–221.

    Google Scholar 

  • Suberkropp, K., M. J. Klug & K. W. Cummins, 1975. Community processing of leaf litter in a woodland stream. Ver. Int. Limnol. 19: 1653–1658.

    Google Scholar 

  • Suberkropp, K., G. L. Godshalk & M. J. Klug, 1976. Changes in the chemical composition of leaves during processing in a woodland stream. Ecology 57: 720–727.

    Google Scholar 

  • Suberkropp, K., T. L. Arsuffi & J. P. Anderson, 1983. Comparison of degradative ability, enzymatic activity, and palatability of aquatic hyphomycetes grown on leaf litter. Appl. Envir. Microbiol. 46: 237–244.

    Google Scholar 

  • Taylor, B. R., D. Parkinson & W. F. J. Parsons, 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70: 97–104.

    Google Scholar 

  • Thompson, P. L. & F. Bärlocher, 1989. Effect of pH on leaf breakdown in streams and in the laboratory. J. N. Am. Benthol. Soc. 8: 203–210.

    Google Scholar 

  • Triska, F. J. & J. R. Sedell, 1976. Decomposition of four species of leaf litter in response to nitrate manipulations. Ecology 57: 783–792.

    Google Scholar 

  • Tuckey, H. B., 1970. The leaching of substances from plants. Ann. Rev. Plant. Physiol. 21: 305–324.

    Article  Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Ann. Rev. Ecol. Syst. 17: 567–594.

    Article  Google Scholar 

  • Wilde, S. A., G. K. Voiggt & J. G. Iyer, 1972. Soil and plant analysis for tree culture. Oxford and IBH Publishing Company. New Delhi, India.

    Google Scholar 

  • Zar, J. H., 1984. Biostatistical analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 118 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canhoto, C., Graça, M.A.S. Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia 333, 79–85 (1996). https://doi.org/10.1007/BF00017570

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017570

Key words

Navigation