Skip to main content
Log in

The influence of mixing on rotifer assemblages of Michigan lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Seasonal changes in the rotifer assemblages of 42 lakes in northern lower Michigan was closely related to lake mixing characteristics, basin morphometry, and the presence of an oxygenated coldwater refuge. Three major classes of lakes (dimictic, discontinuous polymitic, and continuous polymictic) were evident by their capacity to maintain coldwater species as seasons progressed from winter through fall. The disappearance of coldwater assemblages from dimictic lakes coincided with oxygen depletion in the hypolimnion or with erosion of the hypolimnion through mixing. Coldwater species disappeared from large discontinuous polymictic lakes when deep epilimnetic mixing occured in late summer and fall. Species assemblages of nearly all stratified lakes converged with those of continuous polymictic lakes when the hypolimnetic refuge deteriorated in summer and fall. Local weather conditions, however, between years had a pronounced effect on the persistence of cold water species through the seasons by affecting the temperature and oxygen conditions of the hypolimnion. Large lakes of the region contain many of the coldwater species of the Laurentian Great Lakes but some taxa are conspicuosly absent. Cold stenothermal rotifers persist in the lakes of the region despite adverse environmental conditions. Their life histories and ability to form resting stages permit them to escape periods of oxygen depletion and thermal stress. In contrast, the crustacean glacial marine fauna (i.e. Mysis relicta, Limnocalanus macrurus, and Scenecella calanoides) was absent from all of the study lakes even though many of the present-day basins were once connected to the Laurentian Great Lakes. These species long life cycles, lack of diapausing stages, and limited dispersal may make them vulnerable to local extinction with the deterioration and loss of the coldwater refuge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bays, J. S. & T. L. Crisman, 1983. Zooplankton and trophic state relationships in Florida lakes. Can. J. Fish. aquat. Sci. 40: 1813–1819.

    Google Scholar 

  • Berzins, B. & B. Pejler, 1989. Rotifer occurrence in relation to oxygen content. Hydrobiologia 186–187.

  • Campbell, R. S., 1941. Vertical distribution of the plankton Rotifera in Douglas Lake, Michigan, with special reference to depression individuality. Ecol. Monogr. 11: 1–19.

    Google Scholar 

  • Carpenter, S. R., 1987 (ed). Complex interactions in lake assemblages. Springer-Verlag, New York, USA.

    Google Scholar 

  • Carter, J. C. H., M. J. Dadswell, J. C. Roof & W. G. Sprules, 1980. Distribution and zoogeography of planktonic crustaceans and dipterans in glaciated eastern North America. Can. J. Zool. 58: 1355–1387.

    Google Scholar 

  • Carter, J. C. H., W. D. Taylor, R. Chengalath & D. A. Scruton, 1986. Limnetic zooplankton assemblages in Atlantic Canada with special reference to acidification. Can. J. Zool. 43: 444–456.

    Google Scholar 

  • Confer, J. L., T. Kaaret & G. E. Likens, 1983. Zooplankton diversity and biomass in recently acidified lakes. Can. J. Fish. aquat. Sci. 40: 36–42.

    Google Scholar 

  • Eichenlaub, V. L., 1978. Weather and climate of the Great Lakes region. The University of Notre Dame Press, Notre Dame, Indiana, USA.

    Google Scholar 

  • Eichenlaub, V. L., J. R. Harman, F. V. Nurnberger & H. J. Stolle, 1990. The climatic atlas of Michigan. The University of Notre Dame Press. Notre Dame, Indiana, USA.

    Google Scholar 

  • Frost, T. M., D. L. DeAngelis, S. M. Bartell, D. J. Hall & S. H. Hurlburt, 1987. Scale in the design and interpretation of aquatic community research. In S. R. Carpenter, (ed.) Complex interactions in lake assemblages. Springer-Verlag, New York, USA.229–258.

    Google Scholar 

  • Gannon, J. E. & S. A. Gannon, 1975. Observations on the narcotization of crustacean zooplankton. Crustaceana 28: 220–224.

    Google Scholar 

  • Gannon, J. E. & M. W. Paddock, 1974. Investigations into ecological and sociological determinants of land-decision: a study of inland lake watersheds of Northern Michigan. The University of Michigan Biological Station Technical Report No. 1, 314 pp.

  • Gannon, J. E., D. J. Mazur & A. M. Beeton, 1978. Distribution of glacial relict crustacea in some Michigan inland lakes. Michigan Acad. 11: 5–18.

    Google Scholar 

  • Gauch, H. G., 1982a. Noise reduction by eigenvector ordinations. Ecology 63: 1643–1649.

    Google Scholar 

  • Gauch, H. G., 1982b. Multivariate analysis in community ecology. Cambridge University Press, New York, New York, USA.

    Google Scholar 

  • Gilbert, J. J., 1988. Susceptibilities of ten rotifer species to interference from Daphnia pulex. Ecology 69: 1826–1838.

    Google Scholar 

  • Havel, J. E., 1987. Rotifer defenses against predators. Pages 227–237 in W. C. Kerfoot and A. Sih (eds). Predation: complex impacts on aquatic assemblages. New England Press, Hanover, New Hampshire, USA.

    Google Scholar 

  • Hutchinson, G. E., 1957. A treatise on limnology. V.1. Wiley, New York, USA.

    Google Scholar 

  • Kerfoot, W. C., 1980. Evolution and ecology of zooplankton assemblages. University Press of New England, Hanover, New Hampshire, USA.

    Google Scholar 

  • Kratz, T. K., T. M. Frost & J. J. Magnuson, 1987. Inferences from spatial and temporal variability in ecosystems: analyses from long-term zooplankton data from a set of lakes. Am. Nat. 129: 830–846.

    Article  Google Scholar 

  • Lewis, W. R. Jr., 1983. A revised classification of lakes based on mixing. Can. J. Fish. aquat. Sci. 40: 1779–1787.

    Google Scholar 

  • MacIsaac, H. J., T. C. Hutchinson & W. Keller, 1987. Analysis of planktonic rotifer assemblages from Sudbury, Ontario, area lakes of varying chemical composition. Can. J. Fish. aquat. Sci. 44: 1692–1701.

    Google Scholar 

  • Magnuson, J. J., B. J. Benson & T. K. Kratz, 1990. Temporal coherence in the limnology of a suite of lakes in Wisconsin, USA. Freshwat. Biol. 23: 145–159.

    Google Scholar 

  • Mikschi, E., 1989. Rotifer distribution in relation to temperature and oxygen content. Hydrobiologia 186/187: 209–214.

    Google Scholar 

  • Pace, M. L., 1986. An emperical analysis of zooplankton community size structure across lake trophic gradients. Limnol. Oceanogr. 3: 45–55.

    Google Scholar 

  • Patalas, K., 1990. Diversity of the zooplankton assemblages in Canadian lakes as a function of climate. Verh. int. Ver. Limnol. 24: 360–368.

    Google Scholar 

  • Peters, R. H., 1983. Size structure of the plankton community along the trophic gradient of Lake Memphremagog. Can. J. Fish. aquat. Sci. 40: 1770–1778.

    Google Scholar 

  • Pinel-Alloul, B., G. Methot, G. Verreault & Y. Vigneault, 1989. Zooplankton species associations in Quebec lakes: variation with abiotic factors, including natural and anthropogenic acidification. Can. J. Fish. aquat. Sci. 47: 110–121.

    Google Scholar 

  • Roff, J. C., W. G. Sprules, J. C. H. Carter & M. J. Dadswell, 1981. The structure of crustacean zooplankton communities in glaciated eastern North America. Can. J. Fish. aquat. Sci. 38: 1428–1437.

    Google Scholar 

  • Ruttner-Kolisko, A., 1975. The vertical distribution of planktonic rotifers in a small alpine lake with a sharp oxygen depletion (Lunzer Obersee). Verh. int. Ver. Limnol. 19: 1286–1294.

    Google Scholar 

  • Ruttner-Kolisko, A., 1980. The abundance and distribution of Filinia terminalis in various types of lakes as related to temperature, oxygen, and food. Hydrobiologia 73: 169–175.

    Google Scholar 

  • SAS, 1985. SAS user's guide: statistics. Version 5 edition. SAS Institute, Cary, North Carolina, USA.

    Google Scholar 

  • Schindler, D. W., K. G. Beaty, E. J. Fee, D. R. Cruikshank, E. R. DeBruyn, D. L. Findlay, G. A. Linsey, J. A. Shearer, M. P. Stainton & M. A. Turner, 1990. Effects of climatic warming on lakes of the central boreal forest. Science 250: 967–970.

    Google Scholar 

  • Siegfried, C. A., J. A. Bloomfield & J. W. Sutherland, 1988. Acidification, vertebrate and invertebrate predators, and the structure of zooplankton assemblages in Adirondack lakes. Lakes Res. Mgmt. 3: 385–393.

    Google Scholar 

  • Siegfried, C. A., J. A. Bloomfield & J. W. Sutherland, 1989. Planktonic rotifer community structure in Adirondack, New York, USA lakes in relation to acidity, trophic status and related water quality characteristics. Hydrobiologia 175: 33–48.

    Google Scholar 

  • Sprules, W. G., 1975a. Factors affecting the structure of limnetic crustacean assemblages in central Ontario lakes. Verh. int. Ver. Limnol. 19: 635–643.

    Google Scholar 

  • Sprules, W. G., 1975b. Midsummer crustacean zooplankton assemblages in acid-stressed lakes. J. Fish. Res. Bd Can. 32: 389–395.

    Google Scholar 

  • Sprules, W. G., 1980. Zoogeographic patterns in the size structure of zooplankton assemblages, with possible applications to lake ecosystem modeling and management. In W. C. Kerfoot, editor. Evolution and ecology of zooplankton assemblages. New England Press, Hanover, New Hampshire, USA: 642–656.

    Google Scholar 

  • Sprules, W. G., 1984. Towards an optimal classification of zooplankton for lake ecosystem studies. Verh. int. Ver. Limnol. 22: 320–325.

    Google Scholar 

  • Sprules, W. G. & R. Knoechel, 1984. Lake ecosystem dynamics based on functional representations of trophic components. In D. G. Meyers and J. R. Strickler, editors. Trophic interactions within aquatic ecosystems. AAAS Selected Symposium 85, Westview Press, Boulder, Colorado, USA: 383–403.

    Google Scholar 

  • Stemberger, R. S., 1976. Notholca laurentiae and N. michiganensis, new rotifers from the Laurentian Great Lakes region. J. Fish. Res. Bd Can. 33: 2814–2818.

    Google Scholar 

  • Stemberger, R. S., 1979. A Guide to Rotifers of the Laurentian Great Lakes. U.S. Environmental Protection Agency, Cincinnati, Ohio. EPA-600/4–79–021, 185 pp.

    Google Scholar 

  • Stemberger, R. S. & M. S. Evans, 1984. Rotifer seasonal succession and copepod predation In Lake Michigan. J. Great Lakes Res. 10: 417–428.

    Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1987. Rotifer defenses against predators. In W. C. Kerfoot & A. Sih (eds). Predation: complex impacts on aquatic assemblages. New England Press, Hanover, New Hampshire, USA: 227–237.

    Google Scholar 

  • Stemberger, R. S., 1990a. An inventory of rotifer species diversity of northern Michigan inland lakes. Arch. Hydrobiol. 118: 283–302.

    Google Scholar 

  • Stemberger, R. S., 1990b. Keratella armadura, (Rotifera: Brachionidae), a new rotifer from a Michigan bog lake. Can. J. Zool. 68: 2306–2309.

    Google Scholar 

  • Ter Braak, C. J. F., 1987. CANOCO — a fortran program for canonical community ordination by partial detrended canonical correspondence analysis, principal component analysis and redundancy analysis. TNO Institute of applied computer science, Wageningen, The Netherlands: 1–95.

    Google Scholar 

  • Tessier, A. J. & R. J. Horwitz, 1990. Influence of water chemistry on size structure of zooplankton assemblages. Can. J. Fish. aquat. Sci. 47: 1937–1943.

    Google Scholar 

  • Tessier, A. J. & R. J. Horwitz, 1991. Analysis and interpretation of zooplankton samples collected during Phase II of the National Lakes Survey. U.S. Environmental Protection Agency, Cincinnati, Ohio. EPA/600/R-92/012.

    Google Scholar 

  • Tessier, A. J. & J. Welser, 1991. Cladocera assemblages, seasonal succession, and the importance of a hypolimnetic refuge. Freshwat. Biol. 25: 85–93.

    Google Scholar 

  • Welch, P. S., 1936. Limnological investigation of a strongly basic bog lake surrounded by an extensive acid-forming bog mat. Papers Mich. Acad. Sci., Arts, and Letters 21: 727–751.

    Google Scholar 

  • Winer, B. J., 1971. Statistical principles in experimental design. McGraw-Hill, New York, New York, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stemberger, R.S. The influence of mixing on rotifer assemblages of Michigan lakes. Hydrobiologia 297, 149–161 (1995). https://doi.org/10.1007/BF00017481

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017481

Key words

Navigation