Skip to main content
Log in

Effects of 5′ flanking sequences and changes in the 5′ internal control region on the transcription of rice tRNA % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcKbay-haafaqabe% GabaaabaGaae4raiaabYgacaqG5baabaGaae4raiaaboeacaqGdbaa% aaaa!3CC7!\[\begin{array}{*{20}c} {{\text{Gly}}} \\ {{\text{GCC}}} \\ \end{array} \]

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A stretch of 71 nucleotides in a 1.2 kilobase pair Pst I fragment of rice DNA was identified as tRNA% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaauaauaabeqace% aaaeaacaqGhbGaaeiBaiaabccacaqG5baabaGaae4raiaaboeacaqG% dbaaaaaa!3BE7!\[\begin{array}{*{20}c} {{\text{Gl y}}} \\ {{\text{GCC}}} \\ \end{array} \] gene by hybridization and nucleotide sequence analyses. The hybridization of genomic DNA with the tRNA gene showed that there are about 10 glycine tRNA genes per diploid rice genome. The 3′ and 5′ internal control regions, where RNA polymerase III and transcription factors bind, were found to be present in the coding sequence. The gene was transcribed into a 4S product in an yeast cell-free extract. The substitution of 5′ internal control region with analogous sequences from either M13mp19 or M13mp18 DNA did not affect the transcription of the gene in vitro. The changes in three highly conserved nucleotides in the consensus 5′ internal control region (RGYNNARYGG; R = purine, Y = pyrimidine, N = any nucleotide) did not affect transcription showing that these nucleotides are not essential for promotion of transcription. There were two 16 base pair repeats, ‘TGTTTGTTTCAGCTTA’ at −130 and −375 positions upstream from the start of the gene. Deletion of 5′ flanking sequences including the 16 base pair repeat at −375 showed increased transcription indicating that these sequences negatively modulate the expression of the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bawnik N, Beckmann JS, Sarid S, Daniel V: Isolation and nucleotide sequence of a plant tRNA gene: Petunia asparagine tRNA. Nucleic Acids Res 11: 1117–1122 (1983).

    Google Scholar 

  2. Beckman JS, Johnson PF, Abelson J: Cloning of yeast transfer RNA genes in Escherichia coli. Science 196: 205–208 (1977).

    Google Scholar 

  3. Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7: 1513–1523 (1979).

    Google Scholar 

  4. Brownlee CG: Determination of sequences in RNA. North-Holland Publishing Co., Amsterdam/London (1972).

    Google Scholar 

  5. Ciliberto G, Castagnoli L, Cartese R. In: Moscona AA, Monroy A (eds) Current Topics in Developmental Biology, Vol. 18, pp. 58–88. Academic Press, New York (1983).

    Google Scholar 

  6. DeFranco D, Sharp S, Soll D: Identification of regulatory sequences contained in the 5′ flanking region of Drosophila lysine tRNA genes. J Biol Chem 256: 12424–12429 (1981).

    Google Scholar 

  7. Dingermann T, Burke DJ, Sharp S, Schaack J, Soll D: The 5′ flanking sequences of Drosophila tRNAArg gene control. Their in vitro transcription in Drosophila cell extract. J Biol Chem 257: 14738–14744 (1982).

    Google Scholar 

  8. Galli G, Hofstetter H, Birnsteil ML: Two conserved sequence blocks within eukarytic tRNA genes are major promoter elements. Nature 294: 626–631 (1981).

    Google Scholar 

  9. Gouilloud E, Clarkson SG: A dispersed tyrosine tRNA gene from Xenopus laevis with high transcriptional ativity in vitro. J Biol Chem 261: 486–494 (1986).

    Google Scholar 

  10. Grunstein M, Wallis J: Colony hybridization. In: Wu R (ed.) Methods in Enzymology, Vol. 68, pp. 379–389. Academic Press, New York (1979).

    Google Scholar 

  11. Hofstetter H, Kressmann A, Brinsteil ML: A split promoter for eucaryotic tRNA gene. Cell 24: 573–585 (1981).

    Google Scholar 

  12. Hosbach H, Silberklang M, McCarthy BJ: Evaluation of a D. melanogaster glutamate tRNA gene cluster. Cell 21: 169–178 (1980).

    Google Scholar 

  13. Hovemann B, Sharp S, Yamada H, Solil D: Analysis of a Drosophila tRNA gene cluster. Cell 19: 889–895 (1980).

    Google Scholar 

  14. Kafatos FC, Jones CW, Efstratiadis A: Determination of nucleic acids sequence homologies and relative concentration by a dot hybridization procedure. Nucleic Acids Res 7: 1541–1552 (1979).

    Google Scholar 

  15. Koski RA, Allison DS, Worthington MM, Hall BD: An in vitro RNA polymerase III system from S. cerevisiae. Effects of deletions and point mutations upon Sup4 gene transcription. Nucleic Acids Res 10: 8127–8143 (1982).

    Google Scholar 

  16. Mandel M, Higa A: Calcium dependent bacteriophage DNA infection. J Mol Biol 53: 159–162 (1970).

    Google Scholar 

  17. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. pp. 387–392 (1982).

    Google Scholar 

  18. Mao J-I, Schmidt O, Soll D: Dimeric transfer RNA precursors in S. pombe. Cell 21: 509–516 (1980).

    Google Scholar 

  19. Marcu KB, Mignery RE, Dudock BS: Complete nucleotide sequence and properties of the major species of glycine transfer RNA from wheat germ. Biochemistry 16: 797–806 (1977).

    Google Scholar 

  20. Maxam AM, Gilbert W: Sequencing end-labelled DNA with base-specific chemical cleavages. In: Grossman L, Moldave K (eds) Methods in Enzymology, Vol. 65, pp. 499–560, Academic Press, New York (1980).

    Google Scholar 

  21. Muller F, Clarkson SG: Nucleotide sequence of genes coding for tRNA and tRNATyr from repeating unit of X. laevis DNA. Cell 19: 345–353 (1980).

    Google Scholar 

  22. Ogden RC, Knapp G, Peebles CL, Johnson J, Abelson: The mechanism of tRNA splicing. Trends in Biochem 6: 154–158 (1981).

    Google Scholar 

  23. Oono K. In: Tsunoda S, Takaliashi N (eds) Biology of Rice. pp. 339–358. Elsevier (1984).

  24. Palmer MJ, Folk WR: Isolation and sequence analysis of a nuclear tRNAMet-1 gene from soybean. Plant Mol Biol 8: 47–51 (1987).

    Google Scholar 

  25. Reyes VM, Newman A, Abelson J: Mutational analysis of the coordinate expression of the yeast tRNAArg tRNAAsp gene tandem. Mol Cell Biol 6: 2436–2442 (1986).

    Google Scholar 

  26. Sanger F, Coulson AR, Barell BG, Smith AJH, Roe BA: Cloning in single stranded bacteriophage as an aid to rapid DNA sequence. J Mol Biol 143: 161–178 (1980).

    Google Scholar 

  27. Sekiya T, Kuchino Y, Nishimura S: Mammalian tRNA genes Nucleotide sequence of rat genes in tRNAAsp, tRNAGly and tRNAGlu. Nucleic Acids Res 9: 2239–2249 (1981).

    Google Scholar 

  28. Sharp S, DeFranco D, Dingermann T, Farell P, Soll D: Internal control regions for transcription of eukaryotic tRNA genes. Proc Natl Acad Sci USA 78: 6657–6661 (1981).

    Google Scholar 

  29. Smith AJH: DNA sequence analysis by primed synthesis. In: Grossman L, Moldave K (eds) Methods in Enzymology Vol. 65, pp. 560–580. Academic Press, New York (1980).

    Google Scholar 

  30. Southern E: Gel electrophoresis of restriction fragments. In: Wu R (ed) Methods in Enzymology, Vol. 68, pp. 152–176. Academic Press, New York (1979).

    Google Scholar 

  31. Sprague KU, Larson D, Morton D: 5′ Flanking sequence signals are required for activity of silkworm alanine tRNA genes in homologous in vitro transcription systems. Cell 22: 171–178 (1980).

    Google Scholar 

  32. Sprizl M, Moll J, Meissner F, Hestmann T: Compilation of tRNA sequences. Nucleic Acids Res 13: r1-r104 (1985).

    Google Scholar 

  33. Thomas G, Vasavada HA, Zachariah E, Padayatty JD: Cloning of rice DNA and identification of the cloned H2A, H2B & H4 histone genes. Indian J Biochem Biophys 20: 8–15 (1983).

    Google Scholar 

  34. Walbot V, Goldberg R. In: Hall TC, Davies JW (eds) Nucleic acids in plants, pp. 3–40. CRC Press, Cleveland, Vol. 1 (1979).

    Google Scholar 

  35. Waldron C, Wills N, Gesteland RF: Plant tRNA genes: Putative soybean genes for tRNAAsp and tRNAMet. J Mol Appl Genet 3: 7–17 (1985).

    Google Scholar 

  36. Yen PH, Davidson N: The gross anatomy of a tRNA gene cluster at region 42A of the D. melanogaster chromosome. Cell 22: 137–148 (1980).

    Google Scholar 

  37. Zubay G: The isolation and fractionation of soluble ribonucleic acids. J Mol Biol 4: 347–356 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, P.S., Padayatty, J.D. Effects of 5′ flanking sequences and changes in the 5′ internal control region on the transcription of rice tRNA % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcKbay-haafaqabe% GabaaabaGaae4raiaabYgacaqG5baabaGaae4raiaaboeacaqGdbaa% aaaa!3CC7!\[\begin{array}{*{20}c} {{\text{Gly}}} \\ {{\text{GCC}}} \\ \end{array} \]. Plant Mol Biol 11, 575–583 (1988). https://doi.org/10.1007/BF00017457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017457

Key words

Navigation