Skip to main content
Log in

Thermally activated crack propagation — theory

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Steady state crack propagation in solids is analyzed as a thermally activated process. The fracture mechanics concept of a crack driving force is formally introduced to molecular rate theory. This representation of crack propagation appears to be, in many aspects, similar to that of the motion of a dislocation under a shear stress across thermal obstacles. The basic thermodynamic relations are derived for steady state crack propagation using assumptions similar to those well accepted in theories of deformation based on thermally activated dislocation motion.

Résumé

La propagation stationnaire d'une fissure dans un solide est analysée en tant qu'un processus d'activation thermique. Le concept d'une force d'extension de la fissure, utilisé en mécanique de la rupture, est formellement introduit dans la théorie cinétique moléculaire. Cette représentation de la propagation d'une fissure apparaît, en maint aspects, similaire à celle du mouvement d'une dislocation sous l'effect d'une contrainte de cisaillement à traver des obstacles thermiquement franchissables. On dérive les relations thermodynamiques fondamentales pour la propagation stationnaire d'une fissure, à partir d'hypothèses simplificatrices similaires à celles couramment acceptées dans les théories de déformation basées sur le mouvement thermiquement activé des dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.R.Irwin, in Handbuch der Physik, Springer-Verlag, Berlin, 6 (1958) 551.

    Google Scholar 

  2. E.Orowan, Weld. Res. Supp., 34 (1955) 157.

    Google Scholar 

  3. A.Tobolsky and H.Eyring, Journal of Chemical Physics, 11 (1943) 125.

    Google Scholar 

  4. S.N.Zhurkov, International Journal of Fracture Mechanics, 1 (1965) 311.

    Google Scholar 

  5. H.H.Kausch von Schmeling, S.R.Moghe and C.C.Hsiao, Journal of Applied Physics, 38 (1967) 201 and Journal of Applied Physics, 39 (1968) 3857.

    Google Scholar 

  6. R.J.Charles, Journal of Applied Physics, 29 (1958) 1554 and Journal of Applied Physics, 29 (1958) 1657.

    Google Scholar 

  7. W.B.Hillig and R.J.Charles, in High-Strength Materials, V.F.Zackey, ed., John Wiley and Sons, Inc., New York (1965) 682.

    Google Scholar 

  8. C.Hsieh and R.Thomson, Journal of Applied Physics, 44 (1973) 2.

    Google Scholar 

  9. B.Coleman, Journal of Polymer Science, 20 (1956) 447.

    Google Scholar 

  10. S.M.Wiederhorn, H.Johnson, A.M.Diness and A.H.Hever, Journal of the American Ceramic Society, 57 (1974) 336.

    Google Scholar 

  11. S.M.Wiederhorn, Journal of the American Ceramic Society, 50 (1967) 407.

    Google Scholar 

  12. A.G.Evans and S.M.Wiederhorn, Journal of Material Science, 9 (1974) 270.

    Google Scholar 

  13. S.M.Wiederhorn and L.H.Bolz, Journal of the American Ceramic Society, 53 (1970) 543.

    Google Scholar 

  14. J.A. Kies and A.B. Clark, Proceedings of the Second International Conference on Fracture, Brighton, (1969) paper 42.

  15. A.G.Atkins, C.S.Lee, R.M.Caddell, Journal of Material Science, 10 (1975) 1381.

    Google Scholar 

  16. C.B.Henderson, P.H.Graham and C.N.Robinson, International Journal of Fracture Mechanics, 6 (1960) 33.

    Google Scholar 

  17. W.G. Knauss, Applied Mechanics Reviews (Jan. 1973).

  18. A.G.Evans, Journal of Material Science, 7 (1972) 1137.

    Google Scholar 

  19. J.C.M. Li and A.K. Mukherjee, eds., Rate Processes in Plastic Deformation of Materials, A.S.M. (1975).

  20. J.C.M. Li, in Dislocation Dynamics, Materials Science and Engineering Series, Rosenfield et al., eds., McGraw-Hill (1968) 87.

  21. B. de Meester, C. Yin, M. Doner and H. Conrad, in Ref. [19], 175.

  22. J.C.M.Li, Acta Metallurgica, 18 (1970) 1099.

    Google Scholar 

  23. J.C.M. Li, in Ref. [19], 479.

  24. A.J.Holland and W.E.S.Turner, Journal of the Society of Glass Technology, 24 (101) (1940) 46–57 T.

    Google Scholar 

  25. E.B.Shand, Journal of the American Ceramic Society, 37 (1954) 52.

    Google Scholar 

  26. G.P. Marshall, L.E. Culver and J.G. Williams, Plastics and Polymers, (Feb. 1969) 75.

  27. J.N.Obreimov, Proceedings of the Royal Society (London), A127 (1930) 290.

    Google Scholar 

  28. A.Seeger, Zhurnal Naturforsch, 9a (1954) 758, 819, 856.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollet, J.C., Burns, S.J. Thermally activated crack propagation — theory. Int J Fract 13, 667–679 (1977). https://doi.org/10.1007/BF00017299

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017299

Keywords

Navigation