Skip to main content
Log in

Creep in low endurance fatigue of mild steel

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

An analytical solution, based on non-linear beam theory, has been derived to compute the cyclic values of the J contour integral in beam specimens subjected to load cycling and fatigue crack growth above the yield point where large deflections due to cyclic creep occur. The solution has been applied to the particular case of the contoured DCB specimen. When the shear force and rotation at the crack tip were considered the agreement between the computed and the experimental cyclic creep deflection, due to fatigue crack growth on the contoured DCB specimen, were good. The cyclic value of J, ΔJ, was found to be dependent, among other factors, on the cyclic creep properties of the material obtained in load-cycling tests on plain cylindrical specimens. The agreement between the computed ΔJ values and the experimental ones were also good.

Résumé

Une solution analytique basée sur la théorie des poutres non linéaires a été établie pour calculer la valeur cyclique de l'intégrale de contour J dans les poutres sujettes à charge cyclique et à propagation de fissure de fatigue au delà de la limite élastique lorsque des déflections importantes, dues à un fluage cyclique, se présentent. La solution a été appliquée au cas particulier d'éprouvette double Cantilever. Lorsque la force de cisaillement et la rotation à l'extrémité de la fissure sont prises en considération, on a trouvé un bon accord entre la déflection de fluage cyclique calculée et la déflection de fluage cyclique expérimentale due à la croissance de la fissure de fatigue dans l'éprouvette DCB. La valeur cyclique de J, ΔJ a été trouvée dépendante parmi d'autres facteurs des propriétés de fluage cyclique du matériau obtenues lors d'essais de charge cyclique sur des éprouvettes cylindriques pleines. L'accord entre les valeurs de ΔJ calculées et les valeurs expérimentales a également été trouvé satisfaisant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Radon, P.W.J. Oldroyd and D.J. Burns, Mean strain and hardness changes in uniaxial stress cycling, Proceedings I. International Conference on Mechanical Behaviour of Materials, Kyoto, II, Society Mat. Science Japan (1972) 285–298.

  2. P.P.Benham and H.Ford, Journal Mechanical Eng. Science, 3, 2 (1961) 119.

    Google Scholar 

  3. G.J.Moyar and G.M.Sinclair. Cyclic strain accumulation under complex multiaxial loading. Proceedings of Joint International Conference on Creep. Institute of Mechanical Engineers, London (1965) 42.

    Google Scholar 

  4. C.E. Feltner and G.M. Sinclair. Cyclic stress induced creep of close-packed metals. Proceeding of Joint International Conference on Creep, Institute of Mechanical Engineers, London (1965) 3.

  5. P.W.J. Oldroyd and J.C. Radon. Behaviour of aluminium in uniaxial stress cycling. Proceedings 1973 Symposium on Mechanical Behaviour of Materials, Kyoto, Japan (1974) 251.

  6. T.M. Mulgahy, Journal of Applied Mechanics (1971) 869.

  7. J.R.Rice, Transactions of ASME, Journal of Applied Mechanics, 35 (1968) 379.

    Google Scholar 

  8. J.R.Rice. Mathematical analysis in the mechanics of fracture. Chapter 3 in Fracture H.Liebowitz, Editor, II, Academic Press, New York (1968) 191.

    Google Scholar 

  9. J.D.Landes and J.A.Begley. The effect of specimen geometry on J 1c. Fracture Toughness, ASTM STP 514 (1972) 24.

    Google Scholar 

  10. J.R.Rice, P.C.Paris and J.G.Merkle. Some further results of J Integral analysis and estimates. Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536 (1973) 231.

    Google Scholar 

  11. N.E. Dowling. Geometry effects and the J-integral approach to elastic-plastic fatigue crack growth. ASTM Ninth National Symposium on Fracture Mechanics, University of Pittsburgh, Pittsburgh, Pa., August 1975.

  12. D.F.Mowbray. Derivation of a low-cycle fatigue relationship employing recent developments in non-linear fracture mechanics. Material and Process Laboratory, Gen. Elec. Co., Schenectady, New York, February 1975.

    Google Scholar 

  13. S. Timoshenko. Strength of Materials. Part II, Advanced. Van Nostrand Reinhold Co. (1970).

  14. C.M.Branco, J.C.Radon and L.E.Culver. Journal of Testing and Evaluation, 3, 6 (1975) 407.

    Google Scholar 

  15. C.M. Branco, J.C. Radon and L.E. Culver. Fatigue crack growth in load cycling. Internal Report, Mechanical Engineering Department, Imperial College, November 1975.

  16. C.M. Branco, J.C. Radon and L.E. Culver, Metal Science, (1976) 149.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radon, J.C., Branco, C.M. & Culver, L.E. Creep in low endurance fatigue of mild steel. Int J Fract 13, 595–610 (1977). https://doi.org/10.1007/BF00017295

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017295

Keywords

Navigation