Skip to main content
Log in

Prediction of threshold stress intensity for fatigue crack growth using a dislocation model

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

It has been shown that the ratio of threshold stress intensity for fatigue crack growth to the shear modulus is nearly a constant for many materials. This implies that fatigue crack growth is related to some fundamental phenomenon occurring at the crack tip. In the following a dislocation model has been developed to predict the threshold stress intensity. It is shown that the stress intensity can be related to the stress necessary to nucleate a dislocation at the crack tip. The most important outcome of the present analysis is that the threshold stress intensity depends more on the elastic modulus rather than on any other material property in agreement with many experimental results.

Résumé

On a démontré que le rapport de l'intensité de seuil de la contrainte provoquant une fissuration par un accroissement de la fissuration par fatigue au module de cisaillement est sensiblement une constante pour de nombreux matériaux. Ceci implique que la croissance d'une fissure de fatigue est reliée à certains phénoménes fondamentaux qui se produisent à l'extrémité d'une fissure. Dans le mémoire, on développe un modèle de dislocation qui permet de prédire l'intensité critique de la contrainte. On montre que l'intensité de la contrainte peut être mise en relation avec la contrainte nécessaire pour créer une dislocation à l'extrémité d'une fissure. La conséquence la plus importante de cette analyse est que l'intensité critique de seuil dépend davantage du module d'élasticité que de toutes autres propriétés du matériau et ce en accord avec de nombreux résultats expérimentaux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.C.Paris and F.Erdogan, Transactions ASME (D), 85 (1963) 528–534.

    Google Scholar 

  2. S.Pearson, Nature 211 (1966) 1077.

    Google Scholar 

  3. M.O.Speidel, High Temperature Materials in Gas Turbines, eds. P.R.Sahm and M.O.Speidel, Elsevier Scientific Publishing Co., New York (1974) 207–251.

    Google Scholar 

  4. L.P.Pook, Stress Analysis and Growth of Cracks. ASTM STP 513, Philadelphia (1972) 107.

    Google Scholar 

  5. R.J.Bucci, P.C.Paris, R.W.Hertzberg, R.A.Schmidt and A.F.Anderson, Stress Analysis and Growth of Cracks, ASTM STP 513, Philadelphia (1972) 125.

    Google Scholar 

  6. P.C.Paris, R.J.Bucci, E.T.Wessel, W.G.Clark and T.R.Mager, Stress Analysis and Growth of Cracks, ASTM STP 513, Philadelphia (1972) 141.

    Google Scholar 

  7. R.J.Bucci, W.G.ClarkJr. and P.C.Paris, Stress Analysis and Growth of Cracks, ASTM STP 513, Philadelphia (1972) 177.

    Google Scholar 

  8. L.P.Pook and A.A.Beveridge, Fatigue at Elevated Temperatures, ASTM STP 520, Philadelphia (1973) 179.

    Google Scholar 

  9. N.E.Frost, L.P.Pook and K.Denten, Engineering Fracture Mechanics, 3 (1971) 109–126.

    Google Scholar 

  10. M.Klesnil and P.Lukas, Engineering Fracture Mechanics, 4 (1972) 77–92.

    Google Scholar 

  11. V.Weiss and D.N.Lal, Metallurgical Transactions, 5, (1974) 1946–1947.

    Google Scholar 

  12. D.N.Lal and V.Weiss, Metallurgical Transactions, 6A (1975) 1623.

    Google Scholar 

  13. L.P.Pook and N.E.Frost, International Journal of Fracture Mechanics, 9 (1973) 53–61.

    Google Scholar 

  14. F.A. McClintock, Fracture of Solids, eds. D.C. Drucker and J.J. Gilman, Interscience (1963) 65.

  15. W.G. Fleck and R.B. Anderson, Proceedings of the 2nd International Conference on Fracture, Brighton, England (1969) 790.

  16. V.Weiss, Fracture, ed. H.Liebowitz, Academic Press, New York, 3 (1970) 227–263.

    Google Scholar 

  17. A.A.Griffith, Philosophical Transactions of the Royal Society (London), A221 (1921) 163.

    Google Scholar 

  18. G.R.Irwin, Transactions ASME, 79 (1957) 361.

    Google Scholar 

  19. C.Laird, Fatigue Crack Propagation, ASTM STP 415, Philadelphia (1967) 131–168.

    Google Scholar 

  20. A.G.Evans and E.R.Fuller, Metallurgical Transactions, 5 (1974) 27–33.

    Google Scholar 

  21. R.W.Armstrong, Materials Science and Engineering, 1 (1966) 251–256.

    Google Scholar 

  22. J.R.Rice and RobbThomson, Philosophical Magazine, 29 (1974) 73–97.

    Google Scholar 

  23. J.P.Hirth and J.Lothe, Theory of Dislocations, McGraw-Hill, New York (1968) 87.

    Google Scholar 

  24. G.A.Miller, M.H.Avery and W.A.Backofen, Transactions AIME, 236 (1966) 1667–1673.

    Google Scholar 

  25. J.Barson, E.J.Imhof and S.T.Rolfe, Engineering Fracture Mechanics 2 (1970) 301–317.

    Google Scholar 

  26. A.K.Vijh, Corrosion Science, II (1971) 161.

    Google Scholar 

  27. J.R.Rice and M.A.Johnson, Inelastic Behavior of Solids, ed., M.F.Kanninen, McGraw-Hill, New York (1970) 641–671.

    Google Scholar 

  28. L.A.James, Nuclear Technology, 14 (1972) 163–170.

    Google Scholar 

  29. L.A. James, Hanford Engineering Development Laboratory Report, HEDL-TME 75–80 (1975).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadananda, K., Shahinian, P. Prediction of threshold stress intensity for fatigue crack growth using a dislocation model. Int J Fract 13, 585–594 (1977). https://doi.org/10.1007/BF00017294

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017294

Keywords

Navigation