Skip to main content

Heavy metal pollution and soil enzymatic activity

Summary

The activity of hydrolytic soil enzymes was studied on spruce mor, polluted with Cu and Zn from a brass foundry in Sweden. Approximately straight regression lines were obtained between enzymatic activity or respiration rate and log Cu+Zn concentration, with highly significant negative regression coefficients for urease and acid phosphatase activity as well as respiration rate, whereas β-glucosidase activity was not measurably lower at high concentrations of Cu+Zn.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Bezborodova S. I. and Il'ina T. V., Extracellular phosphomonoesterases of fungi belonging to the genus Fusarium. Microbiology 39, 643–648 (1970).

    Google Scholar 

  2. 2

    Blanchar R. W., Rehm G. and Caldwell A. C., Sulphur in plant materials by digestion with nitric and perchloric acid. Soil Sci. Soc. Am. Proc. 29, 71–72 (1965).

    Google Scholar 

  3. 3

    Duerksen J. D. and Halvorson H., Purification and properties of an inducible β-glucosidase of yeast. J. Biol. Chem. 233, 1113–1120 (1958).

    PubMed  Google Scholar 

  4. 4

    Hoffmann G., Eine photometrische Methode zur Bestimmung der Phosphatase-Aktivität in Böden. Z. Pfl. Ernähr. Düng. Bodenk. 118, 161–171 (1968).

    Google Scholar 

  5. 5

    Hoffmann G. and Teicher K., Ein kolorimetrisches Verfahren zur Bestimmung der Ureaseaktivität in Böden. Z. Pfl. Ernähr. Düng. Bodenk. 95, 55–63 (1962).

    Google Scholar 

  6. 6

    Hoffmann G. and Dedeken M., Eine Methode zur colorimetrischen Bestimmung der β-Glucosidase-Aktivität in Böden. Z. Pfl. Ernähr. Düng. Bodenk. 108, 193–198 (1965).

    Google Scholar 

  7. 7

    Hollander, V. P., Acid phosphatases. In The Enzymes 4, 449–498, ed. P. D. Boyer, 3rd ed., New York, 896 pp (1971).

  8. 8

    Hughes R. B., Katz S. A., and Stubbins S. E., Inhibition of urease by metal ions. Enzymologia 36, 332–334 (1969).

    PubMed  Google Scholar 

  9. 9

    Jackson M. L., Soil Chemical Analysis, Prentice-Hall Inc., Englewood Cliffs, N. J. 498 pp. (1958).

    Google Scholar 

  10. 10

    Jermyn M. A., Fungal Cellulases. V. Enzymatic properties of Stachybotrys atra β-glucosidase. Australian J. Biol. Sci. 8, 563–576 (1955).

    Google Scholar 

  11. 11

    Katz S. A., and Cowans J. A., Direct potentiometric study of the urea-urease system. Biochem. Biophys. Acta 107, 605–608 (1965).

    PubMed  Google Scholar 

  12. 12

    Reithel, F. J., Ureases. In The Enzymes 4, 1–21, ed. P. D. Boyer. 3rd ed., New York 896 pp (1971).

  13. 13

    Rühling Å. and Tyler G., Heavy metal pollution and decomposition of spruce needle litter. Oikos 24, 402–416 (1973).

    Google Scholar 

  14. 14

    Schmidt, G., Nonspecific acid phosphomomoesterases. In The Enzymes 5, 37–47, ed. P. D. Boyer, H. Lardy and K. Myrbäck, 2nd ed., New York, 645 pp (1961).

  15. 15

    Shaw W. H. R., The inhibition of urease by various metal ions. J. Am. Chem. Soc. 76, 2160–2163 (1954).

    Google Scholar 

  16. 16

    Tsuboi K. K., and Hudson P. B., Acid phosphatase. VI. Kinetic properties of purified yeast and erythrocyte phosphomonoesterase. Arch. Biochem. Biophys. 61, 197–210 (1956).

    PubMed  Google Scholar 

  17. 17

    Varner, J. E., Urease. In The Enzymes 4, 247–256, ed. P. D. Boyer, H. Lardy, and K. Myrbäck, 2nd ed., New York, 631 pp (1960).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tyler, G. Heavy metal pollution and soil enzymatic activity. Plant Soil 41, 303–311 (1974). https://doi.org/10.1007/BF00017258

Download citation

Keywords

  • Heavy Metal
  • Respiration
  • Respiration Rate
  • Regression Line
  • Phosphatase Activity