Skip to main content
Log in

The finite deformation field surrounding a mode I plane strain crack in a hyperelastic incompressible material under small-scale nonlinearity

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A finite deformation analysis of a plane strain mode I crack in a hyperelastic incompressible material is presented. The nonlinear crack tip field was characterized in terms of its region of dominance under the assumptions of small-scale nonlinearity and compared to the theoretical dominant asymptotic solution for this problem. The influence of the material law (linear vs. third order) on the nonlinear crack tip field was also discussed. The finite element results for the third order material law determined that the maximum stress in the load direction was found along the deformed crack flank behind the crack tip. A local cavitation surface surrounding the crack tip was identified using the linear material law, enabling prediction of potential sites of cavitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.K. Knowles, in Finite Elasticity, The American Society of Mechanical Engineers, The Applied Mechanics Division 27 (1977) 23–40.

  2. R.Stephenson, Journal of Elasticity 12 (1982) 65–99.

    Google Scholar 

  3. H.Hou and R.Abeyaratne, Journal of the Mechanics and Physics of Solids 40 (1992) 571–592.

    Google Scholar 

  4. N.M. Wang and H. Oh, Fracture 1977, 4, ICF4, Waterloo, Canada (1977) 467–484.

  5. G.Ravichandran and W.G.Knauss, International Journal of Fracture 39 (1989) 235–253.

    Google Scholar 

  6. J.Knowles and E.Sternberg, Journal of Elasticity 13 (1983) 257–293.

    Google Scholar 

  7. K.Mazich, K.Morman, F.Oblinger, T.Pan and P.Killgoar, Rubber Chemistry & Technology 62 (1989) 850–862.

    Google Scholar 

  8. J.M.Ball, Philosophical Transactions of the Royal Society (London) A306 (1982) 557–611.

    Google Scholar 

  9. A.N.Gent and P.B.Lindley, Proceedings of the Royal Society (London) A249 (1958) 195–205.

    Google Scholar 

  10. A.E.Oberth and R.S.Bruenner, Transactions of the Society of Rheology 9 (1965) 165–185.

    Google Scholar 

  11. K.Cho and A.N.Gent, Journal of Material Science 23 (1988) 141–144.

    Google Scholar 

  12. R.Stringfellow and R.Abeyaratne, Material Science Engineering A112 (1989) 127–131.

    Article  Google Scholar 

  13. R.M.McMeeking, Journal of the Mechanics and Physics of Solids 25 (1977) 357–381.

    Article  Google Scholar 

  14. C.J. Quigley, A computational and experimental investigation of a mode I crack in an elastomer, S.M. thesis, Massachussetts Institute of Technology (1990).

  15. R.S.Rivlin and A.G.Thomas, Journal of Polymer Science 10 (1953) 291–318.

    Article  Google Scholar 

  16. L.R.Cornwall and R.A.Schapery, Metallography 8 (1975) 445–452.

    Article  Google Scholar 

  17. S. Singh, Deformation behavior and thermomechanical failure of carbon black filled elastomers, Ph.D. thesis, Massachusetts Institute of Technology (1987).

  18. A.N.Gent, Rubber Chemistry & Technology 63 (1990) G49-G53.

    Google Scholar 

  19. A.Goldberg, D.Lesuer and J.Patt, Rubber Chemistry & Technology 62 (1989) 272–287.

    Google Scholar 

  20. A.Goldberg, D.Lesuer and J.Patt, Rubber Chemistry & Technology 62 (1989) 288–304.

    Google Scholar 

  21. A.N.Gent and C.T.R.Pulford, Journal of Material Science 19 (1984) 3612–3619.

    Google Scholar 

  22. A.J.Kinloch and R.J.Young, Fracture Behavior of Polymers, Elsevier Applied Science Publishers, New York (1983).

    Google Scholar 

  23. H.Kausch, Polymer Fracture, Springer-Verlag, New York (1987).

    Google Scholar 

  24. A.G.James, A.Green and G.M.Simpson, Journal of Applied Polymer Science 19 (1975) 2033–2058.

    Article  Google Scholar 

  25. M.L.Williams, Journal of Applied Mechanics 24 (1957) 109–114.

    Google Scholar 

  26. J.R.Rice, Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  27. J.W. Hutchinson, Nonlinear Fracture Mechanics, The Technical University of Denmark (1979).

  28. ABAQUS, Version 4.7, Hibbitt, Karlsson, and Sorensen, Inc., Providence, R.I.

  29. D.M.Parks, Computer Methods in Applied Mechanics and Engineering 12 (1977) 353–364.

    Article  Google Scholar 

  30. B.Moran and C.F.Shih, Engineering Fracture Mechanics 27 (1987) 615–642.

    Article  Google Scholar 

  31. Y.Fukahori and E.H.Andrews, Journal of Material Science 13 (1978) 777–785.

    Google Scholar 

  32. C.J.Quigley, D.M.Parks and R.Dooley, Rubber Chemistry & Technology 66 (1993) 156–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quigley, C.J., Parks, D.M. The finite deformation field surrounding a mode I plane strain crack in a hyperelastic incompressible material under small-scale nonlinearity. Int J Fract 65, 75–96 (1994). https://doi.org/10.1007/BF00017144

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017144

Keywords

Navigation