Skip to main content
Log in

An analytical/numerical approach for cracked elastic strips under concentrated loads — transient response

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

An analytical/numerical approach is presented for the determination of the near-tip stress field arising from the scattering of SH waves by a long crack in a strip-like elastic body. The waves are generated by a concentrated anti-plane shear force acting suddenly on each face of the crack. The problem has two characteristic lengths, i.e. the strip width, and the distance between the point of application of the concentrated forces and the crack tip. It is well-known that the second characteristic length introduces a serious difficulty in the mathematical analysis of the problem. In particular, a non-standard Wiener-Hopf (W-H) equation arises, that contains a forcing term with unbounded behaviour at infinity in the transform plane. In addition, the presence of the strip's finite width results in a complicated W-H kernel introducing, therefore, further difficulties. Nevertheless, a procedure is described here which circumvents the aforementioned difficulties and holds hope for solving more complicated problems (e.g. the plane-stress/strain version of the present problem) having similar features. Our method is based on integral transform analysis, an exact kernel factorization, usage of certain theorems of analytic function theory, and numerical Laplace-transform inversion. Numerical results for the stress-intensity-factor dependence upon the ratio of characteristic lengths are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.R.Irwin, in Handbuch der Physik 6, Springer Verlag, Berlin (1958) 551–590. 041

    Google Scholar 

  2. G.I.Barenblatt, in Advances in Applied Mechanics 7, Academic Press, New York (1962) 55–129.

    Google Scholar 

  3. J.R.Rice, in Fracture 2, Academic Press, New York (1968) 191–311.

    Google Scholar 

  4. G.C.Sih, International Journal of Fracture 4 (1968) 51–68.

    Article  Google Scholar 

  5. G.C.Sih and E.P.Chen, in Elastodynamic Crack Problems (Mechanics of Fracture 4), Noordhoff, Leyden (1977) 1–58.

    Google Scholar 

  6. J.D.Achenbach, in Mechanics Today 1, Pergamon Press, London (1971) 1–57.

    Google Scholar 

  7. L.M.Brock, International Journal of Engineering Science 13 (1975) 851–859.

    Article  Google Scholar 

  8. L.M.Brock, International Journal of Solids and Structures 18 (1982) 467–477.

    Google Scholar 

  9. L.M.Brock, Quarterly of Applied Mathematics 43 (1985) 201–210.

    Google Scholar 

  10. Q.Jiang and J.K.Knowles, International Journal of Fracture 41 (1989) 283–288.

    Google Scholar 

  11. H.G.Georgiadis, in Dynamic Failure of Materials, H.P.Rossmanith and A.J.Rosakis (eds.), Elsevier, London (1991) 296–308.

    Google Scholar 

  12. H.G.Georgiadis et al., International Journal of Engineering Science 29 (1991) 171–177; see also H.G. Georgiadis, International Journal of Solids and Structures 30 (1993) 1891–1906.

    Article  Google Scholar 

  13. H.G.Georgiadis, Engineering Fracture Mechanics 24 (1986) 727–735; see also H.G. Georgiadis and P.S. Theocaris, Journal of Applied Mathematics and Physics (ZAMP) 36 (1985) 146–165.

    Google Scholar 

  14. H.G.Georgiadis and G.A.Papadopoulos, International Journal of Fracture 34 (1987) 57–64.

    Google Scholar 

  15. H.G.Georgiadis and G.A.Papadopoulos, Journal of Applied Mathematics and Physics (ZAMP) 39 (1988) 573–578.

    Google Scholar 

  16. H.G.Georgiadis and G.A.Papadopoulos, Journal of Applied Mathematics and Physics (ZAMP) 41 (1990) 889–899.

    Google Scholar 

  17. L.B.Freund, International Journal of Engineering Science 12 (1974) 179–189.

    Article  Google Scholar 

  18. L.B.Freund, Dynamic Fracture Mechanics, Cambridge University Press, Cambridge (1990).

    Google Scholar 

  19. L.M.Brock, Journal of Elasticity 14 (1984) 415–424.

    Google Scholar 

  20. M.K.Kuo, International Journal of Engineering Science 30 (1992) 199–211.

    Article  Google Scholar 

  21. M.K.Kuo and S.H.Cheng, International Journal of Solids and Structures 28 (1991) 751–768.

    Article  Google Scholar 

  22. G.I.Barenblatt and G.P.Cherepanov, Journal of Applied Mathematics and Mechanics (PMM) 24 (1960) 993–1014.

    Article  Google Scholar 

  23. G.I.Barenblatt and R.V.Goldstein, International Journal of Fracture 8 (1972) 427–434.

    Article  Google Scholar 

  24. G.I.Barenblatt and G.P.Cherepanov, Journal of Applied Mathematics and Mechanics (PMM) 25 (1961) 1654–1666.

    Article  Google Scholar 

  25. G.C.Sih, Journal of the Franklin Institute 280 (1965) 139–149.

    Article  Google Scholar 

  26. G.M.L.Gladwell, Contact Problems in the Classical Theory of Elasticity, Sijthoff and Noordhoff, Alphen aan den Rijn (1980).

    Google Scholar 

  27. J.D.Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam (1973).

    Google Scholar 

  28. B.Noble, Methods Based on the Wiener-Hopf Technique, Pergamon Press, New York (1958).

    Google Scholar 

  29. H.G.Georgiadis and L.M.Brock, International Journal of Fracture 63 (1993) 201–214.

    Google Scholar 

  30. H.Dubner and J.Abate, Journal of the Association of Computing Machinery 15 (1968) 115–123.

    Google Scholar 

  31. K.S.Crump, Journal of the Association of Computing Machinery 23 (1976) 89–96.

    Google Scholar 

  32. H.G.Georgiadis and J.R.Barber, Journal of Elasticity 31 (1993) 141–161.

    Google Scholar 

  33. M.Abramowitz and I.A.Stegun (eds.), Handbook of Mathematical Functions, Dover Publications, New York (1972).

    Google Scholar 

  34. B.van derPol and H.Bremmer, Operational Calculus Based on the Two-sided Laplace Integral, Cambridge University Press, Cambridge (1950).

    Google Scholar 

  35. B.Davies and B.Martin, Journal of Computational Physics 33 (1979) 1–32.

    Article  Google Scholar 

  36. G.V.Narayanan and D.E.Beskos, International Journal for Numerical Methods in Engineering 18 (1982) 1829–1854.

    Google Scholar 

  37. P.J.Davis and P.Rabinowitz, Methods of Numerical Integration, Academic Press, New York (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiadis, H.G., Charalambakis, N. An analytical/numerical approach for cracked elastic strips under concentrated loads — transient response. Int J Fract 65, 49–61 (1994). https://doi.org/10.1007/BF00017142

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017142

Keywords

Navigation