Skip to main content
Log in

Diapause in the life cycle of Calanoides carinatus (Kroyer), (Copepoda, Calanoida)

  • Diapause and Crustacean Life Histories
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The distribution and stage composition of Calanoidescarinatus (Kroyer) are described together with changes in protein and lipid content, respiration rate and gonad development in copepodite stages IV and V (CV) and adults in the Northern Benguela current (17°S, 23°S and 25°S).

During active upwelling the population consisted of two parts: the surface part over the shelf was represented by all development stages, while the deep part offshore was dominated (90–95%) by diapausal CVs. In the surface CVs the surplus assimilated energy was allocated to structural growth and maturation or to synthesis of reserve lipids. CVs with large oil sacs and high lipid content descended into deeper layers and formed diapausal stock; they were characterized by a dramatic decrease of respiration rate. Increase of gonad size in association with decrease of oil sac volume in diapausal CV suggests that reserve lipids were expended not only for respiration but also for gonad development. The moulting of dispausal CVs into adults took place in deep water.

These results are discussed in relation to the life cycle of the C. carinatus population and the factors causing the formation and termination of the diapausal phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alldredge, A. L., B. H. Robinson, A. Fleminger, J. J. Torres, J. M. King & W. M. Hammer, 1984. Direct sampling and in situ observation of a persistent copepod aggregation in the mesopelagic zone of Santa Barbara Bas in. Mar. Biol. 80: 75–81.

    Google Scholar 

  • Androv, V. N., 1976. Some data about the development of Calanus carinatus (Copepoda, Calanoida) in South-East Atlantic. Tru dy AtlantNIRO 60: 117–130 (in Russian).

    Google Scholar 

  • Bamsted, U., 1983. ETS activity as an estimator of respiratory rate of zooplankton populations. The significance of variations in environmental factors. J. exp. mar. Biol. Ecol. 42: 267–283.

    Google Scholar 

  • Barnes, H. & J. Blakstock, 1973. Estimation of lipids in marine animals and tissues: detailed investigation of the su lphophosphovanilin method for ‘total’ lipids. J. exp. mar. Biol. Ecol. 12: 103–118.

    Google Scholar 

  • Bidigare, R. R., F. D. King & D. G. Biggs, 1982. Gultamate dehydrogenase (GDH) and respiratory electron-t ransport-system (ETS) activities in Gulf of Mexico zooplankton. J. Plankton Res. 4: 895–911.

    Google Scholar 

  • Binet, D. & E. Suisse de Sante Claire, 1975. Le copepode planctonique Calanoides carinatus. Repartition et cyc le biolique au large de la Cote d Ivoire. Cah. ORSTOM, Ser. oceanogr. 13: 15–30.

    Google Scholar 

  • Borchers, P. L. & L. Hutchings, 1986. Starvation tolerance, development time and egg production of Calanoides cari natus in the southern Benguela Current. J. Plankton Res. 8: 855–874.

    Google Scholar 

  • Brenning, U., 1985. Structure and development of calanoid populations (Crustacea, Copepoda) in the upwelling regions off North West and South West Africa. Beitr. Meersk. 52, S: 3–23.

    Google Scholar 

  • Carlisle, D. B. & W. J. Pitman, 1961. Diapause, neurosecretion and hormones in copepoda. Nature 190 (4778): 827–828.

    Google Scholar 

  • Conover, R. J., 1988. Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hem isphere. Hydrobiologia 167/168 (Dev. Hydrobiol. 47): 127–142.

    Google Scholar 

  • Drits, A. V., A. F. Pasternak & K. N. Kosobokova, 1993. Feeding, metabolism and body composition of the A ntartic copepod Calanus propinquus Brady with special reference to its life cyle. Polar Biol. 13: 13–21.

    Google Scholar 

  • Escribano, R. & I. A. McLaren, 1992. Influence of food and temperature on lengths and weights of two marine copepods. J. exp. mar. Biol. Ecol. 159: 77–88.

    Google Scholar 

  • Flint, M. V., A. G. Timonin, M. V. Geptner & M. S. Polyakov, 1978. Use of the electronic clos ing device for planktonic nets with a depth recorder (‘Murena’). Oceanologija 18: 365–372 (in Russian).

    Google Scholar 

  • Flint, M. V., A. V. Drits & A. F. Pasternak, 1991. Characteristic features of body compopsition and metab olism in some interzonal copepods. Mar. Biol. 111: 199–205.

    Google Scholar 

  • Head, E. J. H. & R. Harris, 1985. Physiological and biochemical changes in Calanus hyperboreus from Jones Sound N WT during the transition from summer feeding to overwintering condition. Polar Biol. 4: 99–106.

    Google Scholar 

  • Heinrich, A. K., 1993. Comparative ecology of the plankton oceanic communities. Nauka, Moscow, 159 pp. (In Russian).

    Google Scholar 

  • Hirche, H.-J., 1983. Overwintering of Calanus finmarchicus and Calanus helogalandicus. Mar. Ecol. Prog. Ser. 11: 281–290.

    Google Scholar 

  • Ivleva, I. V., 1981. Temperature of environment and exchange rate of aquatic animals. Naukova Dumka, Kiev. 231 pp. (In Russian)

    Google Scholar 

  • Longhurst, A. R., 1967. Vertical distribution of zooplankton in relation to the eastern Pacific oxygen minimum. Deep Sea Res. 14: 51–63.

    Google Scholar 

  • Lowry, O. N., N. J. Rosenbrough, A. L. Farr & R. J. Randall, 1951. Protein measurements with the folin phenol reagent. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Mayzaud, P., 1976. Respiration and nitrogen excretion of zooplankton. 4. The influence of starvation on the metabolism and the bioc hemical composition of some species. Mar. Biol. 37: 47–58.

    Google Scholar 

  • McLaren, I. A. & C. J. Corkett, 1986. Life cycles and production of two species of copepods on the Scotian shelf, eas tern Canada. Syllog. (Nat. Mus. Can.). 58: 362–367.

    Google Scholar 

  • McLaren, I. A., M. J. Tremblay, C. J. Roff, 1989. Copepod production on the Scotian Shelf based on life-his tory analyses and laboratory rearings. Can. J. Fish. aquat. Sci. 14: 560–583.

    Google Scholar 

  • Miller, C. B., T. J. Cowles, P. H. Wiebe, N. J. Grigg, 1991. Phenology in Calanus finmarchic us; hypotheses about control mechanisms. Mar. Ecol. Progr. Ser. 72: 79–91.

    Google Scholar 

  • Ohman, M. N., 1987. Energy sources for recruitment of the subantarctic copepod Neocalanus tonsus. Limnol. Oceangr. 32: 1317–1330.

    Google Scholar 

  • Owens, T. G. & F. D. King, 1975. The measurement of respiratory electron-transport-system activity in marine zooplank ton. Mar. Biol. 30: 27–36.

    Google Scholar 

  • Petit, D., 1982. Calanoides carinatus (copepode pelagique) sur le plateau continental congolais. 3. Abondance, tailles et te mps de generation. Relations avec la chlorophylle. Oceanogr. trop. ORSTOM 17: 155–175.

    Google Scholar 

  • Petit, D. & C. Courties, 1976. Calanoides carinatus (Copepode pelagique) sur le plateau continental conglias. 1. Apercu sur la repartition batymetrique des stades; generations durant la saison froide 1974. Cah. ORSTOM, Ser. oceanogr. 14: 177–199.

    Google Scholar 

  • Shannon, L. V., 1985. The Benguela ecosystem. 1. Evolution of the Benguela, physical features and processes In. M. Barne s (ed.), Oceangrophy and Marine Biology. An Annual Review 23. The University Press, Aberdeen: 105–182.

    Google Scholar 

  • Smith, S. L., 1982. The northwestern Indian Ocean during the monssons of 1979: distribution, abundance, and feeding of zooplankton. Deep Sea Res. 29: 1331–1353.

    Google Scholar 

  • Smith, S. L., 1984. Biological indications of active upwelling in the northwestern Indian Ocean in 1964 and 1979, and a comparison with Peru and Northwest Africa. Deep Sea Res. 31: 951–967.

    Google Scholar 

  • Tande, K. S. & C. C. E. Hopkins, 1981. Ecological investigations of the zooplankton community of Balsfjorden, northern Norway: the genital system in Calanus finmarchicus and the role of gonad development in overwintering strategy. Mar. Biol. 63: 159–1 64.

    Google Scholar 

  • Thiriot, A., 1978. Zooplankton communities in the West African upwelling area. In R. Boje & M. Tomczak ( eds), Analysis of Upwelling Systems. Springer, Berlin: 32–60.

    Google Scholar 

  • Timonin, A. G., 1990. Composition and zooplankton distribution in the Benguela upwelling area off Namibia. Oceanology 30: 651–655 (translated from Russian).

    Google Scholar 

  • Timonin, A. G., E. G. Arashkevich, A. V. Drits & T. N. Semenova, 1992. Zooplankton dynamics in the northern Benguela ecosystem, with special reference to the copepod Calanoides carinatus. In A. I. L. Payne, K. H. Brink, K. H. Mann & R. Hilborn (eds), Benguela Trophic Functioning. S. Afr. J. mar. Sci. 12: 545–560.

  • Unteruberbacher, N. K., 1964. Zooplankton studies in the waters off Walvis Bay with special reference to the Copepoda. Invest. Rep. mar. Res. Lab. S. W. Afr. 11: 42 pp. + Plates 2–36.

  • Verheye, H. M., L. Hutchings & W. T. Peterson, 1991. Life history and population maintenance strategies o f calanoides carinatus (Copepoda: Calanoida) in the southern Benguela ecosystem. S. Afr. J. mar. Sci. 11: 179–191.

    Google Scholar 

  • Verheye, H. M., L. Hutchings, J. A. Huggett & S. J. Painting, 1992. Mesozooplankton dynamics in the Benguela ecosystem, with emphasis on the herbivorous copepods. In A. I. L. Payne, K. H. Brink, K. H. Mann & R. Hilborn (eds), Benguela Trophic Functioning. S. Afr. J. mar. Sci. 12: 561–584.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arashkevich, E.G., Drits, A.V. & Timonin, A.G. Diapause in the life cycle of Calanoides carinatus (Kroyer), (Copepoda, Calanoida). Hydrobiologia 320, 197–208 (1996). https://doi.org/10.1007/BF00016821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016821

Key words

Navigation