, Volume 320, Issue 1–3, pp 27–44 | Cite as

Distribution of crustacean diapause: micro- and macroevolutionary pattern and process

  • Nelson G. HairstonJr.
  • Carla E. Cáceres
Evolutionary Aspects of Diapause in Crustacea


Theoretical predictions for the relationships between duration of dormancy, reproductive life span, and dispersal ability developed for plants in temporally varying environments are applied here to crustaceans. Mathematical models suggest that diapause duration should negatively covary with adult life span, and that both diapause and life span should negatively covary with dispersal ability. A survey of 167 crustacean species from 20 orders and three classes confirms that species with prolonged diapause have short adult life spans and those with long adult lives either have diapause lasting less than a year, or do not diapause at all. Prolonged diapause is more common among small or inland water crustaceans than it is among large or marine species, whereas large or marine species have significantly longer adult life spans on average than do those that are small or from inland waters. A greater fraction of species in the Branchiopoda exhibit prolonged diapause than do members of the Maxillopoda which, in turn, are more likely to exhibit prolonged diapause than are the Malacostraca. A greater fraction of malacostracan species have adult life spans exceeding one year than do species in either the Branchiopoda or the Maxillopoda. Cladistic analysis shows that phylogenetic constraint is likely to be at least in part responsible for the expression of diapause among the Crustacea. We conclude that both natural selection and macroevolutionary pattern have influenced the distribution of diapause among modern crustaceans.


Mathematical Model Natural Selection Life Span Theoretical Prediction Adult Life 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiken, D. E., 1969. Ovarian maturation and egg laying in the crayfish Orconectes virilis: Influence of temperature and photoperiod. Can. J. Zool. 47: 931–935.Google Scholar
  2. Alekseev, V., 1989. Influence of diapause upon level of oxygen consumption in Astacus (Decapoda). State Research Institute for Lake and River Fisheries, Research Reports. 300: 80–90. (In Russian).Google Scholar
  3. Andrew, T. E. & A. Herzig, 1984. The respiration rate of the resting eggs of Leptodora kindti and Bythotrephes longimanus Leydig 1860 (Crustacea, Cladocera) at environmentally encountered temperatures. Oecologia 64: 241–244.Google Scholar
  4. Angell, R. W. & J. W. Hancock, 1989. Response of eggs of Heterocypris incongruens (Ostracoda) to experimental stress. J. crustacean Biol. 9: 381–386.Google Scholar
  5. Arashkevich, E. G., A. V. Drits & A. G. Timonin, 1994. Diapause in the life cycle of the copepod Calanoides carinatus. International Symposium: Diapause in Crustacea, Abstracts p. 7.Google Scholar
  6. Ban, S., 1992. Seasonal distribution, abundance and viability of diapause eggs of Eurytemora affinis (Copepoda: Calanoida) in the sediment of Lake Ohnuma, Hokkaido. Bull. Plankton Soc. Japan 39: 41–48.Google Scholar
  7. Blueweiss, L., H. Fox, V. Kudzma, D. Nakashima, P. Peters & S. Sams, 1978. Relationships between body size and some life history parameters. Oecologia 37: 257–272.Google Scholar
  8. Borowsky, B., 1980. Reproductive patterns of three intertidal saltmarsh gammaridean amphipods. Mar. Biol. 55: 327–334.Google Scholar
  9. Borutzky, E. W., 1929. Zur Frage über den Ruhezustand bei Copepoda-Harpacticoida. Dauereier bei Canthocampus arcticus Lilljeborg. Zool. Anz. 83: 225–233.Google Scholar
  10. Brendonck, L., D. M. Centeno & G. Persoone, 1993. Fecundity and resting egg characteristics of some subtropical fairy shrimp and clam shrimp species (Crustacea: Branchiopoda) reared under laboratory conditions. Arch. f. Hydrobiol. 126: 445–459.Google Scholar
  11. Brusca, R. C. & G. J. Brusca, 1991. Invertebrates. Sinauer, Sunderland. 922 pp.Google Scholar
  12. Burton, R. S., 1983. Protein polymorphisms and genetic differentiation of marine invertebrate populations. Mar. Biol. Lett. 4: 193–206.Google Scholar
  13. Cáceres, C. E., 1994. Egg bank dynamics and daphnid species diversity. Bull. Ecol. Soc. Amer./Suppl. 75: 30.Google Scholar
  14. Carefoot, T. H., 1973. Studies on the growth, reproduction, and life cycle of the supralittoral isopod Ligia pallasii. Mar. Biol. 18: 302–311.Google Scholar
  15. Carvalho, G. R. & H. G. Wolf, 1989. Resting eggs of lake-Daphnia I. Distribution, abundance and hatching of eggs collected from various depths in lake sediments. Freshwat. Biol. 22: 459–470.Google Scholar
  16. Castro, M., 1992. A methodology for obtaining information on the age structure and growth rates of the Norway Lobster, Nephrops norvegicus (L.) (Decapoda, Nephropoidea). Crustaceana 63: 29–43.Google Scholar
  17. Champeau, A., 1970. Etude de la vie latente chez les Calanoîdes (Copépodes) caractéristiques des eaux temporaires de Basse-Provence. Ann. Fac. Sci. Marseille 44: 155–189.Google Scholar
  18. Cohen, A. C. & J. G. Morin, 1990. Patterns of reproduction in ostracods: A review. J. crustacean Biol. 10: 184–211.Google Scholar
  19. Cohen, D., 1966. Optimizing reproduction in a randomly varying environment. J. theor. Biol. 12: 119–129.Google Scholar
  20. Cohen, D., 1970. A theoretical model for the optimal timing of diapause. Am. Nat. 104: 389–400.Google Scholar
  21. Cohen, D. & S. A. Levin, 1985. The interaction between dispersal and dormancy strategies in varying and heterogeneous environments. In: E. Teramoto and M. Yamaguti (eds), Mathematical topics in population biology, morphogenesis and neurosciences, Proceedings. Springer-Verlag, Heidelberg: 110–122.Google Scholar
  22. Cooper, R. A. & J. R. Uzman, 1977. Ecology of juvenile and adult clawed lobsters. In: B. F. Phillips & J. S. Cobb (eds), Workshop on lobster and rock lobster ecology and physiology: 187–208.Google Scholar
  23. Cukerzis, J., 1970. La biologie de l'écrevisse (Translation to French 1984). Institut Nationale de la Recherche Agronomique, Paris, 313 pp.Google Scholar
  24. Daly, K. L. & D. M. Damkaer, 1986. Population dynamics and distribution of Neomysis mercedis and Alienacanthomysis macropsis (Crustacea: Mysidacea) in relation to the parasitic copepod Hansenulus trebax in the Columbia River estuary. J. crustacean Biol. 6: 840–857.Google Scholar
  25. Dana, G. L., 1984. Artemia in temporary alkaline ponds near Fallon, Nevada with a comparison of its life history strategies in temporary and permanent habitats. In: S. Jain & P. Moyle (eds), Vernal pools and intermittent streams. Institute of Ecology Publication No. 28, University of California, Davis: 115–125.Google Scholar
  26. Delorme, L., 1991. Ostracoda. In: J. H. Thorp and A. P. Covich (eds) Ecology and classification of North American freshwater invertebrates. Academic, San Diego: 691–722.Google Scholar
  27. De Stasio, B. T., Jr., 1989. The seed bank of a freshwater crustacean: Copepodoly for the plant ecologist. Ecology 70: 1377–1389.Google Scholar
  28. De Stasio, B. T., Jr., 1990. The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community. Limnol. Oceanogr. 35: 1079–1090.Google Scholar
  29. De Stasio, B. T., Jr. & N. G. Hairston, Jr., 1992. Environmental variability and the persistence of multiple emergence strategies. Bull. math. Biol. 54: 313–334.Google Scholar
  30. Dugan, J. E., A. M. Wenner & D. M. Hubbard, 1991. Geographic variation in the reproductive biology of the sand crab Emerita analoga (Stimpson) on the California coast. J. exp. Mar. Biol. Ecol. 150: 63–81.Google Scholar
  31. Easterling, M. R. & S. Ellner, 1994. Hatching strategies in a random environment: A structured model. Bull. Ecol. Soc. Amer./Supp. 75: 59.Google Scholar
  32. Edmondson, W. T., 1955. The seasonal life history of Daphnia in an arctic lake. Ecology 36: 439–455.Google Scholar
  33. Elgmork, K., 1955. A resting stage without encystment in the annual cycle of the freshwater copepod Cyclops strenuus strenuus. Ecology 36: 739–743.Google Scholar
  34. Elgmork, K., G. Halvorsen, J. A. Eie & A. Langeland, 1990. Coexistence with similar life cycles in two species of freshwater copepods (Crustacea). Hydrobiologia 208: 187–200.Google Scholar
  35. Ellner, S., 1984. Asymptotic behavior of some stochastic difference equation population models. J. math. Biol. 19: 169–200.Google Scholar
  36. Ellner, S., 1985. ESS germination strategies in randomly varying environments I. Logistic-type models. Theor. Pop. Biol. 28: 50–79.Google Scholar
  37. Ellner, S. & N. G. Hairston, Jr., 1994. Role of overlapping generations in maintaining genetic variation in a fluctuating environment. Am. Nat. 143: 403–417.Google Scholar
  38. Endler, J. A., 1977. Geographic variation, speciation, and clines. Princeton Univ. Press, Princeton, NJ., 246 pp.Google Scholar
  39. Farmer, A. S., 1973. Age and growth in Nephrops norvegicus (Decapoda: Nephropidae). Mar. Biol. 23: 315–329.Google Scholar
  40. Fryer, G., 1972. Observations on the ephippia of certain macrothricid cladocerans. Zool. J. Linn. Soc. 51: 79–86.Google Scholar
  41. Fryer, G., 1987. A new classification of the branchiopod Crustacea. Zool. J. Linn. Soc. 91: 357–383.Google Scholar
  42. Fryer, G. & D. G. Frey, 1981. Two-egged ephippia in the chydorid Cladocera. Freshwat. Biol. 11: 391–394.Google Scholar
  43. Fryer, G., 1994. Diapause, a potent force in the evolution of freshwater crustaceans. International Symposium: Diapause in Crustacea. Abstracts, p. 11.Google Scholar
  44. Grice, G. D. & N. H. Marcus, 1981. Dormant eggs of marine copepods. Oceanogr. Mar. Biol. annu. Rev. 19: 125–140.Google Scholar
  45. Hairston, N. G., Jr. & B. T. De Stasio, Jr., 1988. Rate of evolution slowed by a dormant propagule pool. Nature 336: 239–242.Google Scholar
  46. Hairston, N. G., Jr. & W. R. Munns, Jr., 1984. The timing of copepod diapause as an evolutionary stable strategy. Am. Nat. 123: 733–751.Google Scholar
  47. Hairston, N. G., Jr. & R. A. Van Brunt, 1994. Diapause dynamics of two diaptomid copepod species in a large lake. Hydrobiologia 292/293 (Dev. Hydrobiol. 102): 209–218.Google Scholar
  48. Hairston, N. G., Jr., S. Ellner & C. M. Kearns, 1995a. Overlapping generations: the storage effect and the maintenance of biotic diversity. In: O. E. Rhodes, R. K. Chesser & M. H. Smith (eds), Population dynamics in ecological space and time. Univ. Chicago Press, Chicago (in press).Google Scholar
  49. Hairton, N. G., Jr, R. A. Van Brunt, C. M. Kearns & D. R. Engstrom, 1995b. Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 1706–1711.Google Scholar
  50. Hartland-Rowe, R. C. B., 1972. The limnology of temporary waters and the ecology of Euphyllopoda. In: R. B. Clark and R. J. Wooton (eds), Essays in hydrobiology. University of Exeter, Exeter: 15–32.Google Scholar
  51. Hedgecock, D., M. L. Tracey & K. Nelson, 1982. Genetics. In: L. G. Abele (ed.), The biology of crustacea, Vol. 2. Academic, New York: 283–403.Google Scholar
  52. Hickman, V. V., 1937. The embryology of the syncarid crustacean, Anaspides tasmaniae. Pap. & Proc. r. Soc. Tasm. 1936: 1–35.Google Scholar
  53. Hildrew, A. G., 1985. A quantitative study of the life history of a fairy shrimp (Branchiopoda: Anostraca) in relation to the temporary nature of its habitat, a Kenyan rainpool. J. anim. Ecol. 54: 99–110.Google Scholar
  54. Hines, A. H., 1979. The comparative reproductive ecology of three species of intertidal barnacles. In: S. E. Stancyk (ed.), Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, SC: 213–234.Google Scholar
  55. Holmquist, C., 1972. Das Zooplankton der Binnengewässer V. Mysidacea. Binnengewässer 26: 247–256.Google Scholar
  56. Huys, R. & G. A. Boxshall, 1991. Copepod evolution. The Ray Society, London, 468 pp.Google Scholar
  57. Jenkins, D. G. & A. L. Buikema, in prep. Structure and function of zooplankton communities in twelve new experimental ponds.Google Scholar
  58. Johannsson, O., 1992. Life history and productivity of Mysis relicta in Lake Ontario. J. Great Lakes Res. 18: 154–168.Google Scholar
  59. Juchault, P., W. Jassem & J.-P. Mocquard, 1982. Déterminisme de la reproduction saisonnière de femelles d'Armadillidium vulgare Latr. (Crustacé, Isopoda, Oniscoîda). VI. Mise en évidence d'une photopériode critique permettant l'entrée en reproduction; modatités du maintien en reproduction. Ann. Sci. Nat. Zool. 4: 203–210.Google Scholar
  60. Katajisto, T., 1996. Copepod eggs survive a decade in the sediments of the Baltic Sea. Hydrobiologia 320 (Dev. Hydrobiol. 114): 153–159.Google Scholar
  61. Khmeleva, N. M. & V. M. Baichorov, 1987. Comparative estimate of reproductive cycles in two relict, ecologically different mysid species. Polsk. Arch. Hydrobiol. 34: 321–329.Google Scholar
  62. Korpelainen, H., 1986. The effect of diapause on the genetic structure of Daphnia magna populations. Z. zool. Syst. Evolut. -forsch. 24: 291–299.Google Scholar
  63. Kulikov, A. S., 1980. On the ecology of two gammarid and one mysid species from the cryopelagic biocenose of the central arctic basin. Biol. Cent. Ark. Bass: 111–118. (In Russian).Google Scholar
  64. Lampert, W. & I. Krause, 1976. Zur Biologie der Cladocere Holopedium gibberum Zaddach im Windgfällweiher (Schwarzwald). Arch. f. Hydrobiol./Supp. 48: 262–286.Google Scholar
  65. Lasenby, D. C., T. G. Northcote & M. Fürst, 1986. Theory, practice, and effects of Mysis relicta introductions to North American and Scandinavian lakes. Can. J. Fish. aquat. Sci. 43: 1277–1284.Google Scholar
  66. Levin, S. A., D. Cohen & A. Hastings, 1984. Dispersal strategies in patchy environments. Theor. Pop. Biol. 26: 165–191.Google Scholar
  67. Levins, R., 1969. Dormancy as an adaptive strategy. Symp. Soc. exp. Biol. 23: 1–10.Google Scholar
  68. Lindley, J. A., 1992. Resistant eggs of the Centropagoidea (Copepoda: Calanoida): A possible preadaptation to colonization of inland waters. J. crustacean Biol. 12: 368–371.Google Scholar
  69. Livdahl, T. P., 1979. Environmental uncertainty and selection for life cycle delays in opportunistic species. Am. Nat. 113: 835–842.Google Scholar
  70. Maguire, B., Jr., 1963. The passive dispersal of small aquatic organisms and their colonization of isolated bodies of water. Ecol. Monogr. 33: 161–185.Google Scholar
  71. Maier, G., 1989. Variable life cycles in the freshwater copepod Cyclops vicinus (Uljanin 1875): Support for the predator avoidance hypothesis? Arch. f. Hydrobiol. 45: 203–219.Google Scholar
  72. Marcus, N. H., R. Lutz, W. Burnett & P. Cable, 1994. Age, viability, and vertical distribution of zooplankton resting eggs from an anoxic basin: Evidence of an egg bank. Limnol. Oceanogr. 39: 154–158.Google Scholar
  73. Mattox, N. T. & J. T. Verlardo, 1950. Effect of temperature on the development of the eggs of a conchostracan phyllopod, Caenestheriella gynecia. Ecology 31: 497–506.Google Scholar
  74. Mauchline, J. & L. R. Fisher, 1969. The biology of euphausids. Adv. Mar. Biol. 7: 1–454.Google Scholar
  75. McCaughran, D. A. & G. C. Powell, 1977. Growth model for Alaska king crab (Paralithodes camtschatica) J. Fish. Res. Bd. Can. 34: 989–995.Google Scholar
  76. Miller, C. B. & K. S. Tande, 1993. Stage duration estimation for Calanus populations: a modeling study. Mar. Ecol. Prog. Ser. 102: 15–34.Google Scholar
  77. Moghraby, A. el., 1977. A study of diapause of zooplankton in a tropical river — The Blue Nile. Freshwat. Biol. 7: 207–212.Google Scholar
  78. Momot, W. T., 1986. Production and exploitation of the crayfish, Orconectes virilis, in northern climates. Can. Special Pub. Fish. aquat. Sci. 92: 154–167.Google Scholar
  79. Momot, W. T., 1992. Further range extensions of the crayfish, Orconectes virilis, in the Lake Superior Basin of northwestern Ontario. Can. Field-Nat. 106: 397–399.Google Scholar
  80. Moritz, C., 1987. A note on the hatching and viability of Ceriodaphnia ephippia collected from lake sediment. Hydrobiologia 145 (Dev. Hydrobiol. 35): 309–314.Google Scholar
  81. Moritz, C., 1988. Die Verteilung der Ephippien von Bosmina longirostris und Ceriodaphnia pulchella im Sediment des Piburger Sees (Ôtztal, Tirol). Ber. nat.-med. Verein Innsbruck 75: 91–107.Google Scholar
  82. Murphy, G. I., 1968. Pattern in life history and the environment. Am. Nat. 102: 391–403.Google Scholar
  83. Naess, T. & J. P. Nilssn, 1991. Diapausing fertilized adults: a new pattern of copepod life cycle. Oecologia 86: 368–371.Google Scholar
  84. Ng, P. K. L., 1988. The freshwater crabs of peninsular Malaysia and Singapore. S. Lee Press, Kent Ridge, Singapore, 156 pp.Google Scholar
  85. Omori, M., 1971. The biology of pelagic shrimps in the ocean. Adv. Mar. Biol. 12: 233–324.Google Scholar
  86. Otto, R. S., 1986. Management and assessment of Eastern Bering Sea king crab stocks. Can. Special Pub. Fish. aquat. Sci. 92: 83–106.Google Scholar
  87. Payne, J. F. & J. O. Price, 1983. Studies of the life history and ecology of Orconectes palmeri palmeri (Faxon). In: C. R. Goldman (ed.), Freshwater crayfish V. AVI Publishing Company, Westport, Connecticut: 183–191.Google Scholar
  88. Pearce, A. F. & B. F. Phillips, 1994. Oceanic processes, Puerulus settlement and recruitment of the Western Rock Lobster, Panulirus cygnus. In: P. W. Sammarco & M. L. Heron (eds), The bio-physics of marine larval dispersal. Amer. Geophys. Union, Washington, D. C.: 279–303.Google Scholar
  89. Peters, R. H., 1983. The ecological implications of body size. Cambridge University Press, Cambridge, UK, 329 pp.Google Scholar
  90. Philippi, T., 1993. Bet-hedging germination of desert annuals: beyond the first year. Am. Nat. 142: 474–487.Google Scholar
  91. Reaka, M. L., 1979. The evolutionary ecology of life history patterns in stomatopod crustacea. In: S. E. Stancyk (ed.), Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, SC: 235–260.Google Scholar
  92. Rees, M., 1993. Trade-offs among dispersal strategies in British plants. Nature 366: 150–152.Google Scholar
  93. Rees, M., 1994. Delayed germination of seeds: A look at the effects of adult longevity, the timing of reproduction, and population age/stage structure. Am. Nat. 144: 43–64.Google Scholar
  94. Roff, D. A., 1992. The evolution of life histories. Chapman & Hall, New York, 535 pp.Google Scholar
  95. Roff, J. C., 1972. Aspects of the reproductive biology of the planktonic copepod Limnocalanus macrurus Sars, 1863. Crustaceana 22: 155–160.Google Scholar
  96. Rothlisberg, P. C. & J. A. Church, 1994. Processes controlling the larval dispersal and postlarval recruitment of penaeid prawns. In: P. W. Sammarco & M. L. Heron (eds), The bio-physics of marine larval dispersal. Amer. Geophys. Union, Washington, DC: 235–252.Google Scholar
  97. Rylov, V. M., 1963. Freshwater cyclopoida. In: E. N. Pavlovskii & A. A. Shtakel'berg (eds), Fauna of the USSR, Vol 3. Translated from Russian by the Israel Program for Scientific Translations, Jerusalem, 314 pp.Google Scholar
  98. Sarvala, J., 1979a. Benthic resting periods of pelagic cyclopoids in an oligotrophic lake. Holarct. Ecol. 2: 88–100.Google Scholar
  99. Sarvala, J., 1979b. A parthenogenetic life cycle in a population of Canthocamptus staphylinus (Copepoda, Harpacticoida). Hydrobiologia 62: 113–129.Google Scholar
  100. Sazhina, L. I., 1987. Reproduction, growth and production of marine copepoda. Institute of Biology of South Seas, Ukrainian Academy of Science, 155 pp.Google Scholar
  101. Schmitt, W. L., 1965. Crustaceans. Univ. of Michigan Press, Ann Arbor, 204 pp.Google Scholar
  102. Schram, F. R., 1986. Crustacea. Oxford, New York, 606 pp.Google Scholar
  103. Segerstrale, S. G., 1962. The immigration and prehistory of the glacial relicts of Eurasia and North America. A survey and discussion of modern views. Int. Revue ges. Hydrobiol. 47: 1–25.Google Scholar
  104. Shmida, A. & S. Ellner, 1984. Coexistence of plant species with similar niches. Vegetatio 58: 29–55.Google Scholar
  105. Stearns, S. C., 1976. Life-history tactics: a review of the ideas. Quart. Rev. Biol. 51: 3–47.Google Scholar
  106. Strathmann, R. R. & M. F. Strathmann, 1982. The relationship between adult size and brooding in marine invertebrates. Am. Nat. 119: 91–101.Google Scholar
  107. Swain, R. & C. I. Reid, 1983. Observations on the life history and ecology of Anaspides tasmaniae (Thomson) (Syncarida: Anaspididae). J. crustacean Biol. 3: 163–172.Google Scholar
  108. Tadini-Vitagliano, G., G. F. Valentino & L. Migliore, 1982. Is the mechanism present in Asellus aquaticus (L.) an evolutionary stage towards an endogenous calendar? Z. zool. Syst. Evolut. -forsch. 20: 144–155.Google Scholar
  109. Taylor, B. E. & D. L. Mahoney, 1990. Zooplankton in Rainbow Bay, a Carolina Bay pond: population dyanamics in a temporary habitat. Freshwat. Biol. 24: 597–612.Google Scholar
  110. Taylor, B. E., G. A. Wyngaard & D. L. Mahoney, 1990. Hatching of Diaptomus stagnalis eggs from a temporary pond after a prolonged dry period. Arch. f. Hydrobiol. 117: 271–278.Google Scholar
  111. Taylor, F., 1980. Optimal switching to diapause in relation to the onset of winter. Theor. Pop. Biol. 18: 125–133.Google Scholar
  112. Templeton, A. R. & D. A. Levin, 1979. Evolutionary consequences of seed pools. Am. Nat. 114: 232–249.Google Scholar
  113. Theisen, B. F., 1966. The life history of seven species of ostracodes from a Danish brackish-water locality. Meddelelser fra Danmarks Fiskeri — og Havundersøgelser, n.s. 4: 215–270.Google Scholar
  114. Thienemann, A., 1950. Verbreitungsgeschichte der Süsswassertierwelt Europas. Die Binnengewässer 18: 1–809.Google Scholar
  115. Toda, H., M. Takahashi & S. Ichimura, 1982. Abundance and life history of Neomysis intermedia Czerniawsky in Lake Kasumigaura. Hydrobiologia 93 (Dev. Hydrobiol. 10) 31–39.Google Scholar
  116. Venable, D. L. & L. Lawlor, 1980. Delayed germination and dispersal in desert annuals: Escape in space and time. Oecologia 46: 272–282.Google Scholar
  117. Watson, N. H. F. & B. N. Smallman, 1971. The role of photoperiod and temperature on the induction and termination of an arrested development in two species of freshwater cyclopoid copepods. Can. J. Zool. 49: 855–862.Google Scholar
  118. Weaver, C. R., 1943. Observation on the life cycle of the fairy shrimp Eubranchipus vernalis. Ecology 24: 500–502.Google Scholar
  119. Weslawski, J. M., 1989. Occurrence and life cycle of Mysis oculata (Crustacea) from Spitsbergen. Pol. Arch. Hydrobiol. 36: 207–215.Google Scholar
  120. Westin, L. & R. Gydemo, 1986. Influence of light and temperature on reproduction and moulting frequency of the crayfish, Astacus astacus L. Aquaculture 52: 43–50.Google Scholar
  121. Wiggins, G. B., R. J. Mackay & I. M. Smith, 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Arch. f. Hydrobiol./Supp. 58: 97–206.Google Scholar
  122. Williams-Howze, J. & B. C. Coull, 1992. Are temperature and photoperiod necessary cues for encystment in the marine benthic harpacticoid copepod Heteropsyllus nunni Coull? Biol. Bull. 182: 109–116.Google Scholar
  123. Williamson, C. E., 1991. Copepoda. In: J. H. Thorp and A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates. Academic, San Diego: 787–822.Google Scholar
  124. Wolcott, T. G., 1988. Ecology. In: W. W. Burggren & B. R. McMahon (eds), Biology of the land crabs. Cambridge University Press, Cambridge: 55–96.Google Scholar
  125. Wyngaard, G. A., 1988. Geographical variation in dormancy in a copepod: evidence from population crosses. Hydrobiologia 167/168 (Dev. Hydrobiol. 47): 367–374.Google Scholar
  126. Wyngaard, G. A., B. E. Taylor & D. L. Mahoney, 1991. Emergence and dynamics of cyclopoid copepods in an unpredictable environment. Freshwat. Biol. 25: 219–232.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Nelson G. HairstonJr.
    • 1
  • Carla E. Cáceres
    • 1
  1. 1.Section of Ecology and SystematicsCornell UniversityIthacaUSA

Personalised recommendations