, Volume 320, Issue 1–3, pp 1–14 | Cite as

Diapause, a potent force in the evolution of freshwater crustaceans

  • Geoffrey Fryer
Evolutionary Aspects of Diapause in Crustacea


After a brief historical review of the discovery of diapause in freshwater crustaceans, its dramatic nature in certain cyclopoid copepods, in which diapausing individuals may occur at densities of > 106 per m2, is used to illustrate the enormous ecological significance of the phenomenon. Some of the problems presented by dispause in cyclopoid copepods are noted, including the different behaviour in different lakes of what appears to be a single species. Different physiological cues or different genetic endowments are clearly involved.

The wider incidence of diapause in freshwater copepods and ostracods is noted.

Among freshwater crustaceans it it the Branchiopoda that have universally adopted diapause, always at the egg stage. Even such an ancient order as the Anostraca, perhaps the most primitive of all crustaceans, produces elaborately constructed resting eggs that are capable of cryptobiosis, can remain viable in a dry state for long periods, and can tolerate extreme conditions. The nature of branchiopod resting eggs is briefly reviewed. Of these, only those of the Anomopoda are protected by containers derived from the parental carapace. These are mechanically complex in the most advanced species but, as shown by fossils, are extremely ancient structures.

Factors initiating the onset and termination of diapause in branchiopods are briefly noted, and the process of hatching of resting eggs is outlined.

Key words

diapause freshwater Crustacea antiquity diversity evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abreu-Grobois, F. A. & J. A. Beardmore, 1980. Genetic characterisation of Artemia populations — an electrophoretic approach. In The Brine Shrimp Artemia. Vol. 1, Eds. G. Persoon, P. Sorgeloos, O. Reoels & E. Jaspers. Wetteren. University Press: 133–146.Google Scholar
  2. Andrew, T. E., 1993. The influence of oxygen concentration on the respiration rate of the resting eggs of Leptodora kindti (Focke 1844) and Bythotrephes longimanus Leydig 1860. Arch. Hydrobiol. 128: 409–414.Google Scholar
  3. Andrew, T. E. & A. Hertzig, 1984. The respiration rate of the resting eggs of Leptodora kindti (Focke 1844) and Bythotrephes longimanus Leydig 1860 (Crustacea, Cladocera) at environmentally encountered temperatures. Oecologia (Berlin) 64: 241–244.Google Scholar
  4. Baird, W., 1850. The natural history of the British Entomostraca. London. Ray. Soc.Google Scholar
  5. Belk, D., 1970. Functions of the conchostracan egg shell. Crustaceana, 19: 105–106.Google Scholar
  6. Belk, D., 1972. The biology and ecology of Eulimnaida antlei (Conchostraca) Southwest Nat. 16, 297–305.Google Scholar
  7. Belk, D., 1987. Embryonic cuticles of Artemia during diapause and hatching: insights for comparison with other Branchiopoda. J. Crust. Biol. 7: 691–696.Google Scholar
  8. Birge, E. A. & C. Juday, 1908. A summer resting stage in the development of Cyclops bicuspidatus Claus. Trans. Wisc. acad. Sci. Arts & Lett. 16: 1–9.Google Scholar
  9. Bishop, J. A., 1968. Resistance of Limnadia stanleyana (Branchiopoda, Conchostaca) to desiccation. Crustaceana 14: 35–38.Google Scholar
  10. Borutzky, E. V., 1929. Zur Frage über den Ruhezustand bei Copepoda Harpacticoida. Dauereier bei Canthocamptus arcticus Lilljeborg. Zool. Anz. 83: 225–233.Google Scholar
  11. Carlisle, D. B., 1968. Triops (Entomostraca) eggs killed only by boiling. Science 161: 279.Google Scholar
  12. Brendonck, L. & A. Coomans, 1994a. Egg morphology in African Streptocephalidae (Crustacea: Branchiopoda: Anostraca). Part 1 South of Zambezi and Kunene Rivers. Arch. Hydrobiol. Suppl. 99: 313–334.Google Scholar
  13. Brendonck, L. & A. Coomans, 1994b. Egg morphology in African Streptocephalidae (Crustacea: Branchiopoda: Anostraca). Part 1 South of Zambezi and Kunene Rivers and Madagascar. Arch. Hydrobiol. Suppl. 99: 335–356.Google Scholar
  14. Champeau, A., 1970. Recherches sur l'écologie et l'adaptation á la vie latente des copépodes des eaux temporaires Provençales et Corses. Thesis. Univ. Aix- Marseille, 360 pp.Google Scholar
  15. De Walsche, C., N. Munuswamy, & H.J. Dumont, 1991. Structural differences between the cyst walls of Streptocephalus dichotomus (Baird), S. torvicornis (Waga), and Thamnocephalus platyurus (Packard) (Crustacea: Anostraca), and a comparison with other genera and species. Hydrobiologia 212 (Dev. Hydrobiol. 64): 195–202.Google Scholar
  16. Elgmork, K., 1959. Seasonal occurrence of Cyclops strenuus strenuus in relation to environment in small water bodies in Southern Norway. Folia limnol. Scand. 11: 1–196.Google Scholar
  17. Elgmork, K., 1962. A bottom resting stage in the planktonic freshwater copepod Cyclops scutifer Sars. Oikos 13: 306–310.Google Scholar
  18. Elgmork, K., 1967. Ecological aspects of diapause in copepods. Proc. Symp. Crust. Pt. 3: 947–954.Google Scholar
  19. Elgmork, K., 1981. Extraordinary prolongation of the life cycle in a freshwater planktonic copepod, Holarctic Ecol. 4: 278–290.Google Scholar
  20. Fautrez, J. & N. Fautrez-Firlefyn, 1971. Contribution á l'étude des glandes coquiliéres et des coques de l'oeuf d'Artemia salina. Arch. Biol. 82: 41–83.Google Scholar
  21. Fryer, G., 1972. Observations on the ephippia of certain macrothricid cladocerans. Zool. J. Linn. Soc. 51: 76–96.Google Scholar
  22. Fryer, G., 1985. Structure and habits of living branchiopod crustaceans and their bearing on the interpretation of fossil forms. Trans. r. Soc. Edinb. 76: 103–113.Google Scholar
  23. Fryer, G., 1987a. Morphology and the classification of the so-called Cladocera. Hydrobiologia 145 (Dev. Hydrobiol. 35): 19–28.Google Scholar
  24. Fryer, G., 1987b. A new classification of the branchiopod Crustacea. Zool. J. Linn. Soc. 91: 357–383.Google Scholar
  25. Fryer, G., 1988. Studies on the functional morphology and biology of the Notostraca (Crustacea: Branchiopoda). Phil. Trans. r. Soc. B. 321: 27–124.Google Scholar
  26. Fryer, G., 1991. A daphniid ephippium (Branchiopoda: Anomopoda) of Cretaceous age. Zool. J. Linn. Soc. 102: 163–167.Google Scholar
  27. Fryer, G. & W.J.P. Smyly, 1954. Some remarks on the resting stages of some freshwater cyclopoid and harpacticoid copepods. Ann. Mag. Nat. Hist. Ser. 12, 7: 65–72.Google Scholar
  28. Galway, A. K., R. Reed & G. G. T. Guarini, 1980. Observations on internal structures of chrome alum dehydration nuclei. Nature, Lond. 283: 52–54.Google Scholar
  29. Garreau de Loubresse, N., 1974. Étude chronologique de la mise en place des enveloppes de l'oeuf d'un Crustace' phyllopode: Tanymastix lacunae. J. Microsc. (Fr) 20: 21–38.Google Scholar
  30. Gilchrist, B. M., 1978. Scanning electron microscope studies of the egg shell in some Anostraca (Crustacea: Branchiopoda). Cell Tiss. Res. 193: 337–351.Google Scholar
  31. Hairston, N. G. Jr. & C.E. Cáceres, 1996. Distribution of Crustacean diapause: micro- and macro-evolutionary pattern and process. Hydrobiologia 320 (Dev. Hydrobiol. 114): 24–44.Google Scholar
  32. Hertzig, A., 1985. Resting eggs — a significant stage in the life cycle of the crustaceans Leptodora kindti and Bythotrephes longimanus. Verh. int. Ver. Limnol. 22: 3088–3098.Google Scholar
  33. Jurine, L., 1820. Histoire des Monocles, qui se trouvent aux environs de Genéve. Paris. Paschaud.Google Scholar
  34. Khalaf, A. N. & R. E. Hall, 1975. Embryonic development and hatching of Chirocephalus diaphanus Prévost (Crustacea: Anostraca) in nature. Hydrobiologia 47: 1–11.Google Scholar
  35. Kiefer, F., 1981. Beitrag zur Kenntnis von Morphologie, Taxonomie und Geographischer Verbreitung von Mesocyclops leuckarti auctorum. Arch. Hydrobiol. Suppl. 62: 148–190.Google Scholar
  36. Korovchinsky, N. M. & O. S. Boikova, 1996. The resting eggs of the Ctenopoda (Crustacea: Branchiopoda): a review. Hydrobiologia 320 (Dev. Hydrobiol. 114): 131–140.Google Scholar
  37. Kupka, E., 1940. Untersuchungen über die Schalenbildung und Schalenstructur bei den Eiern von Branchipus schaefferi (Fischer). Zool. Anz. 132: 130–139.Google Scholar
  38. Lampert, W. & I. Krause, 1976. Zur Biologie der Cladocere Holopedium gibberum Zaddach in Windgfällweiher (Schwartzwald). Arch. Hydrobiol. Suppl. 48: 262–286.Google Scholar
  39. Lauterborn, R. & E. Wolf, 1909. Cystenbildung bei Canthocamptus microstaphylinus. Zool. Anz., 34: 130–136.Google Scholar
  40. Linder, H. J., 1960. Studies on the freshwater fairy shrimp Chirocephalopsis bundyi (Forbes) II Histochemistry of egg-shell formation. J. Morph. 197: 259–284.Google Scholar
  41. Makrushin, A. V., 1972. Protoephippial glands in Cladocera (Crustacea). Zool. Zhur. 51: 1736–1738 (In Russian).Google Scholar
  42. Makrushin, A. V., 1978. Anhydrobiosis and the structure of Cladoceran egg yolk. Zool. Zhur. 57: 364–373. (In Russian).Google Scholar
  43. Makrushin, A. V., 1981. Resistance of resting eggs of Sida crystallina and Moina macrocopa. Zool. Zhur. 60: 933–935. (In Russian).Google Scholar
  44. Makrushin, A. V., 1985. Anhydrobiosis of primary invertebrates. Acad. Sci. U.S.S.R. Publ. Leningrad, 101 pp. (In Russian).Google Scholar
  45. Makrushin, A. V. & G. I. Markevich, 1982. On the formation of ephippia in some Cladocera (Crustacea) Zool. Zhur. 61: 1425–1427. (In Russian).Google Scholar
  46. Martin, J. W., 1992. Branchiopoda. In, Microscopical anatomy of invertebrates. Vol. 9 Crustacea. pp. 25–224. Wiley-Liss.Google Scholar
  47. Müller, O. F., 1785. Entomostraca, seu insecta testacea etc. Lipsiae et Harniae.Google Scholar
  48. Mura, G. & A. Thiery, 1986. Taxonomical significance of scanning electron microscopic morphology of the euphyllopods resting eggs from Morocco. Part 1 Anostraca. Vie Milieu 36: 125–131.Google Scholar
  49. Petiver, J., 1709. Gazophylacii Naturae.Google Scholar
  50. Planel, H., Y. Gaubin, R. Kaiser & B. Pianezzi, 1980. Effects of space environment on Artemia eggs. In, The Brine Shrimp Artemia, Vol. 1 (G. Personne, P. Sargeloos, O. Roels & E. Jaspers) Wetteren Universa Press. 189–198.Google Scholar
  51. Rzóska, J., 1961. Observations on tropical rainpools and general remarks on temporary waters. Hydrobiologia 17: 265–286.Google Scholar
  52. Sars, G. O., 1924. The freshwater Entomostraca of the Cape Province (Union of South Africa), Part II: Ostracoda. Ann. S Afr. Mus. 20: 105–193.Google Scholar
  53. Schaeffer, J. C., 1755. Die grünen Armpolypen, die geschwanzten und ugeschwanzten zackigen Wasserflohe und eine besondere Art kleiner Wasseraale. Regensberg. Weiss.Google Scholar
  54. Schaeffer, J. C., 1756. Der krebsartige Kiefenfuss mit der kurzen und langen Schwanzklappe: 65–200. Ratisbon.Google Scholar
  55. Schödler, J. E., 1846. Ueber Acanthocercus rigidus, ein bisher noch un-bekkantes Entomostracon aus der Familie der Cladoceren. Arch. Naturgesch 12: 301–374.Google Scholar
  56. Scourfield, D. J., 1899. The winter egg of a rare water-flea (Leydigia acanthocercoides Fischer). J. Quekett Micro. Club 7(2): 171–179.Google Scholar
  57. Scourfield, D. J., 1901. The ephippium of Bosnina. J. Quekket Micro. Club. 8: 51–56.Google Scholar
  58. Scourfield, D. J., 1902. The ephippia of the lynceid Entomostraca. J. Quekket Micro. Club 8 (2): 217–244.Google Scholar
  59. Schultz, T. W., 1977. Fine structure of the ephippium of Daphnia pulex (Crustacea: Cladocera) Trans. am. Micros. Soc. 96: 313–321.Google Scholar
  60. Shan, R. K., 1976. Influence of light on hatching resting eggs of chydorids (Cladocera) Int. Revue Hydrobiol. 55: 295–302.Google Scholar
  61. Smirnov, N. N., 1992. Mesozoic Anomopoda (Crustacea) from Mongolia. Zool. J. Linn. Soc. 104: 97–116.Google Scholar
  62. Smyly, W. J. P., 1961. The life-cycle of the freshwater copepod Cyclops leuckarti Claus in Esthwaite Water. J. anim. Ecol. 30: 153–171.Google Scholar
  63. Smyly, W. J. P., 1962. Laboratory experiments with stage V copepodids of the freshwater copepod Cyclops leuckarti Claus from Windemere and Esthwaite Water. Crustaceana 4: 273–280.Google Scholar
  64. Smyly, W. J. P., 1967. A resting stage in Cyclops dybowskii Lande (Crustacea: Copepoda) Naturalist 92: 125–126.Google Scholar
  65. Smyly, W. J. P., 1977. A note on the resting egg of Holopedium gibberum Zaddach (Crustacea: Cladocera). Microscopy 33: 170–171.Google Scholar
  66. Straus, E. J., 1819–20. Mémoire sur les Daphnia de la classe des Crustacés. Mem. Mus. Hist. Nat. Paris 5: 380–425; 6: 149–162.Google Scholar
  67. Stross, R. G., 1969a. Photoperiod control of diapause in Daphnia II Induction of winter diapause in the Arctic. Biol. Bull. 136: 264–273.Google Scholar
  68. Stross, R. G., 1969b.Photoperiod control of diapause in Daphnia III. Two-stimulus control of long-day, short-day induction. Biol. Bull. 137: 359–374.Google Scholar
  69. Stross, R. G. & G. C. Hill, 1965. Diapause induction in Daphnia requires two stimuli. Science. 150: 1462–1464.Google Scholar
  70. Tanaka, T., S-T. Sun, Y. Hirokawa, S. Katayama, J. Kucero, Y. Hirose & T. Amiya, 1987. Mechanical instability of gels at the phase transition. Nature, Lond. 325: 796–798.Google Scholar
  71. Thiery, A., 1985. Ponte et ultrastructure de l'oeuf Chez Triops granarius Lucas (Crustacea, Notostraca): adaptations à l'assèchment de l'habitat. Verh. int. Ver. Limnol. 22: 3024–3028.Google Scholar
  72. Thiery, A., 1987. Les crustaces branchiopodes Anostraca, Notostraca et Conchostraca des milieux limnique temporaires (Dayas) au Maroc, Taxonomie, Biogeographie, Ecologie, These Univ. d' Aix-Marseille, 405 pp.Google Scholar
  73. Tommasini, S., F. Scanabissi Sabelli & M. Trentini, 1989. Scanning electron microscope study of eggshell development in Triops cancriformis (Bosc.) (Crustacea, Notostraca). Vie Milieu 39: 29–32.Google Scholar
  74. Ulomosky, S. N., 1953. New ecological studies of some species of oar-legged crustaceans (Copepoda), Mesocyclops leuckarti (Claus), 1851 C. R. acad. Sci. URSS, 90: 295–297. (In Russian).Google Scholar
  75. Walossek, D., 1993. The Upper Cambrian Rehbachiella and the phylogeny of the Branchiopoda and Crustacea. Fossils and Strata No. 32, 1–202.Google Scholar
  76. Wolf, E., 1905. Die Fortpflanzungs-Verhältnisse unsere einheimischen Copepoden. Zool. Jahrb. Syst. 22: 101–280.Google Scholar
  77. Wolff, M., 1905. Das Ephippium von Daphnia pulex. ForschBer biol. Stn. Plön. 12: 303–315.Google Scholar
  78. Zwack, A., 1905. Der feiner Bau und die Bildung des Ephippiums von Daphnia hyalina Leydig. Z. wiss. Zool. 79: 548–573.Google Scholar
  79. Zaffagnini, F. & G. Minelli, 1970. Origine e natura della membrane che avvologno l'uova di Limnetis lenticularis (Crustacea: Conchostraca). Boll. Zool. 37: 139–149.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Geoffrey Fryer
    • 1
  1. 1.Institute of Environmental and Biological SciencesLancaster UniversityBailriggUK

Personalised recommendations