Optimum growth conditions and light utilization efficiency of Spirulina platensis (= Arthrospira fusiformis) (Cyanophyta) from Lake Chitu, Ethiopia

Abstract

Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m−2s−1) showed a maximum specific growth rate (µmax) of 1.78 d−1. Quantum yield for growth (Φµ) was 3.8% at the optimum light for growth of 330 µmol photons m−2s−1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).

This is a preview of subscription content, log in to check access.

References

  1. Ahlgren, I. & G. Ahlgren, 1976. Vattenkemiska analysmetoder sammanställda för undervisningen i limnologi (Methods of water-chemical analyses compiled for instruction in limnology, English translation 1978). Institute of Limnology, Uppsala, Sweden, 112 pp.

    Google Scholar 

  2. Aiba, S. & T. Ogawa, 1977. Assessment of growth yield of blue-green alga, Spirulina platensis in axenic and continuous culture. J. Gen. Microbiol. 102: 179–182.

    Google Scholar 

  3. Amha Belay, Y. Ota, K. Miyakawa & H. Shimamatsu, 1993. Current knowledge on potential health benefits of Spirulina. J. appl. Phycol. 5: 235–241.

    Google Scholar 

  4. Ciferri, O. & O. Tiboni, 1985. The biochemistry and industrial potential of Spirulina. Ann. Rev. Microbiol. 39: 503–526.

    Article  Google Scholar 

  5. Espie, G. S., A. G. Miller, R. A. Kandasamy & D. T. Canvin, 1991. Active HCO 3 transport in cyanobacteria. Can. J. Bot. 69: 936–944.

    Google Scholar 

  6. Falkowski, P. G., Z. Dubinsky & K. Wyman, 1985. Growth-irradiance relationships in phytoplankton. Limnol. Oceanogr. 30: 311–321.

    Google Scholar 

  7. Gallegos, C. L. & T. Platt, 1981. Photosynthesis measurements on natural populations of phytoplankton: numerical analysis. In T. Platt (ed.), Physiological bases of phytoplankton ecology. Can. Bull. Fish. Aquat. Sci. 210: 103–112.

  8. George, E. A., 1976. Culture centre of algae and protozoa. List of strains 1976, 3rd edition. Inst. Terr. Ecol., Nat. Environment Res. Counc., Cambridge, 120 pp.

    Google Scholar 

  9. Grobbelaar, J. U. & C. J. Soeder, 1985. Respiration losses in planktonic green algae cultivated in raceway ponds. J. Plankton Res. 7: 497–506.

    Google Scholar 

  10. Halldal, P., 1970. The photosynthetic apparatus of microalgae and its adaptation to environmental factors. In P. Halldal (ed.), Photobiology of microorganisms. Wiley-Interscience, London: 17–55.

    Google Scholar 

  11. Harris, G. P., 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Arch. Hydrobiol. Beih. (Ergebn. Limnol.) 10: 1–171.

    Google Scholar 

  12. Iehana, M., 1983. Kinetic analysis of the growth of Spirulina sp. in continuous culture. J. Ferment. Technol. 61: 457–466.

    Google Scholar 

  13. Jassby, A. D. & T. Platt, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540–547.

    Google Scholar 

  14. Jensen, S. & G. Knutsen, 1993. Influence of light and temperature on photoinhibition of photosynthesis in Spirulina platensis. J. appl. Phycol. 5: 495–504.

    Google Scholar 

  15. Kappers, F. I., 1984. On population dynamics of the cyanobacterium Microcystis aeruginosa. PhD Dissertation, University of Amsterdam, The Netherlands, 175 pp.

    Google Scholar 

  16. Kiefer, D. A. & B. G. Mitchell, 1983. A simple, steady state description of phytoplankton growth based on absorption cross section and quantum efficiency. Limnol. Oceanogr. 28: 770–776.

    Google Scholar 

  17. Komarek, J. & J. W. G. Lund, 1990. What is ‘Spirulina platensis’ in fact? Arch. Hydrobiol./Suppl. 85, Algolog. Stud. 58: 1–13.

    Google Scholar 

  18. Markager, S., 1993. Light absorption and quantum yield for growth in five species of marine macroalgae. J. Phycol. 29: 54–63.

    Google Scholar 

  19. Martel, A., S. Yu, G. Garcia-Reina, P. Lindblad & M. Pedersén, 1992. Osmotic-adjustment in the cyanobacterium Spirulina platensis: presence of an α-glucosidase. Plant Physiol. Biochem. 30: 573–578.

    Google Scholar 

  20. Medlin, L. K., H. J. Elwood, S. Stickel & M. L. Sogin, 1991. Morphological and genetic variation within the diatom Skeletonema costatum (Bacillariophyta): evidence for a new species, Skeletonema pseudocostatum. J. Phycol. 27: 514–524.

    Article  Google Scholar 

  21. Melack, J. M., 1979. Photosynthesis and growth of Spirulina platensis (Cyanophyta) in an equatorial lake (Lake Simbi, Kenya). Limnol. Oceanogr. 24: 753–760.

    Google Scholar 

  22. Ogawa, T. & S. Aiba, 1978. CO2 assimilation and growth of a bluegreen alga, Spirulina platensis, in continuous culture. J. Appl. Chem. Biotechnol. 28: 515–521.

    Google Scholar 

  23. Ogawa, T. & G. Teruyi, 1970. Studies on the growth of Spirulina platensis. I. On the pure culture of Spirulina platensis. J. Ferment. Technol. 48: 361–367.

    Google Scholar 

  24. Ogawa, T., H. Kozasa & G. Teruyi, 1971. Studies on the growth of Spirulina platensis. II. Growth kinetics of an autotrophic culture. J. Ferment. Technol. 50: 143–149.

    Google Scholar 

  25. Olaizola, M. & E. O. Duerr, 1990. Effects of light intensity and quality on the growth rate and photosynthetic pigment content of Spirulina platensis. J. appl. Phycol. 2: 97–104.

    Google Scholar 

  26. Platt, T. & C. L. Gallegos, 1980. Modelling primary production. In P. G. Falkowski (ed.), Primary productivity in the sea. Plenum Press, New York: 339–362.

    Google Scholar 

  27. Platt, T. & A. D. Jassby, 1976. The relationship between photsynthesis and light for natural assemblages of coastal marine phytoplankton. J. Phycol. 12: 421–430.

    Google Scholar 

  28. Raven, J. A., 1984. A cost-benefit analysis of photon absorption by photosynthetic unicells. New Phytol. 98: 593–625.

    Google Scholar 

  29. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384 pp.

    Google Scholar 

  30. Talling, J. F., 1957. Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytol. 56: 133–149.

    Google Scholar 

  31. Talling, J. F., 1966. Photosynthetic behaviour in stratified and unstratified lake populations of a planktonic diatom. J. Ecol. 54: 99–127.

    Google Scholar 

  32. Talling, J. F., R. B. Wood, M. V. Prosser & R. M. Baxter, 1973. The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshwat. Biol. 3: 53–76.

    Google Scholar 

  33. Tanticharoen, M., M. Reungjitchachawali, B. Bunnag, P. Vonktaveesuk, A. Vonshak & Z. Cohen, 1994. Optimization of λ-linolenic acid (GLA) production in Spirulina platensis. J. appl. Phycol. 6: 295–300.

    Google Scholar 

  34. Tedesco, M. A. & E. O. Duerr, 1989. Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928. J. appl. Phycol. 1: 201–209.

    Google Scholar 

  35. Tilzer, M. M., 1987. Light-dependence of photosynthesis and growth in cyanobacteria: implications for their dominance in eutrophic lakes. New Zealand J. Mar. Freshwat. Res. 21: 401–412.

    Google Scholar 

  36. Van Liere, L., 1979. On Oscillatoria agardhii Gormont, experimental ecology and physiology of a nuisance bloom-forming cyanobacterium. PhD Dissertation, University of Amsterdam, The Netherlands, 98 pp.

    Google Scholar 

  37. Van Liere, L., W. Zevenboom & L. R. Mur, 1975. Growth of Oscillatoria agardhii Gom. Hydrobiol. Bull. 9: 62–70.

    Google Scholar 

  38. Vareschi, E., 1979. The ecology of Lake Nakuru (Kenya). II. Biomass and spatial distribution of fish (Tilapia grahami Boulenger = Sarotherodon alcalicum grahami Boulenger). Oecologia (Berl.) 37: 321–335.

    Google Scholar 

  39. Vareschi, E. & J. Jacobs, 1984. The ecology of Lake Nakuru (Kenya). V. Production and consumption of consumer organisms. Oecologia (Berl.) 61: 83–98.

    Google Scholar 

  40. Vonshak, A., 1990. Recent advances in microbial biotechnology. Biotech. Adv. 8: 709–727.

    Article  Google Scholar 

  41. Vonshak, A., A. Abeliovich, S. Boussiba, S. Arad & A. Richmond, 1982. Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2: 175–185.

    Article  Google Scholar 

  42. Vonshak, A. & A. Richmond, 1988. Mass production of Spirulina an overview. Biomass 15: 233–248.

    Article  Google Scholar 

  43. Vonshak, A., G. Torzillo & L. Tomaseli, 1994. Use of chlorophyll fluorescence to estimate the effect of photoinhibition in outdoor cultures of Spirulina platensis. J. appl. Phycol. 6: 31–34.

    Google Scholar 

  44. Warr, S. R. C., R. H. Reed, J. A. Chudek, R. Foster & W. D. P. Stewart, 1985. Osmotic adjustment in Spirulina platensis. Planta 163: 424–429.

    Google Scholar 

  45. Zarrouk, C., 1966. Contribution a l' étude d'une cyanophycée'. Influence de diverse facteures physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. et Gardner) Geitler. Ph.D. Thesis, University of Paris, France, 74 pp.

    Google Scholar 

  46. Zevenboom, W., J. van der Does, K. Bruning & L. R. Mur, 1981. A non-heterocystous mutant of Aphanizomenon flos-aquae, selected by competition in light-limited continuous culture. FEMS Microbiology Letters 10: 11–16.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kebede, E., Ahlgren, G. Optimum growth conditions and light utilization efficiency of Spirulina platensis (= Arthrospira fusiformis) (Cyanophyta) from Lake Chitu, Ethiopia. Hydrobiologia 332, 99–109 (1996). https://doi.org/10.1007/BF00016689

Download citation

Key words

  • Arthrospira
  • Chitu
  • Ethiopia
  • growth
  • light
  • nutrient status
  • quantum yield
  • Spirulina