, Volume 332, Issue 2, pp 99–109 | Cite as

Optimum growth conditions and light utilization efficiency of Spirulina platensis (= Arthrospira fusiformis) (Cyanophyta) from Lake Chitu, Ethiopia

  • Elizabeth Kebede
  • Gunnel Ahlgren


Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m−2s−1) showed a maximum specific growth rate (µmax) of 1.78 d−1. Quantum yield for growth (Φµ) was 3.8% at the optimum light for growth of 330 µmol photons m−2s−1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).

Key words

Arthrospira Chitu Ethiopia growth light nutrient status quantum yield Spirulina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlgren, I. & G. Ahlgren, 1976. Vattenkemiska analysmetoder sammanställda för undervisningen i limnologi (Methods of water-chemical analyses compiled for instruction in limnology, English translation 1978). Institute of Limnology, Uppsala, Sweden, 112 pp.Google Scholar
  2. Aiba, S. & T. Ogawa, 1977. Assessment of growth yield of blue-green alga, Spirulina platensis in axenic and continuous culture. J. Gen. Microbiol. 102: 179–182.Google Scholar
  3. Amha Belay, Y. Ota, K. Miyakawa & H. Shimamatsu, 1993. Current knowledge on potential health benefits of Spirulina. J. appl. Phycol. 5: 235–241.Google Scholar
  4. Ciferri, O. & O. Tiboni, 1985. The biochemistry and industrial potential of Spirulina. Ann. Rev. Microbiol. 39: 503–526.CrossRefGoogle Scholar
  5. Espie, G. S., A. G. Miller, R. A. Kandasamy & D. T. Canvin, 1991. Active HCO3 transport in cyanobacteria. Can. J. Bot. 69: 936–944.Google Scholar
  6. Falkowski, P. G., Z. Dubinsky & K. Wyman, 1985. Growth-irradiance relationships in phytoplankton. Limnol. Oceanogr. 30: 311–321.Google Scholar
  7. Gallegos, C. L. & T. Platt, 1981. Photosynthesis measurements on natural populations of phytoplankton: numerical analysis. In T. Platt (ed.), Physiological bases of phytoplankton ecology. Can. Bull. Fish. Aquat. Sci. 210: 103–112.Google Scholar
  8. George, E. A., 1976. Culture centre of algae and protozoa. List of strains 1976, 3rd edition. Inst. Terr. Ecol., Nat. Environment Res. Counc., Cambridge, 120 pp.Google Scholar
  9. Grobbelaar, J. U. & C. J. Soeder, 1985. Respiration losses in planktonic green algae cultivated in raceway ponds. J. Plankton Res. 7: 497–506.Google Scholar
  10. Halldal, P., 1970. The photosynthetic apparatus of microalgae and its adaptation to environmental factors. In P. Halldal (ed.), Photobiology of microorganisms. Wiley-Interscience, London: 17–55.Google Scholar
  11. Harris, G. P., 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Arch. Hydrobiol. Beih. (Ergebn. Limnol.) 10: 1–171.Google Scholar
  12. Iehana, M., 1983. Kinetic analysis of the growth of Spirulina sp. in continuous culture. J. Ferment. Technol. 61: 457–466.Google Scholar
  13. Jassby, A. D. & T. Platt, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540–547.Google Scholar
  14. Jensen, S. & G. Knutsen, 1993. Influence of light and temperature on photoinhibition of photosynthesis in Spirulina platensis. J. appl. Phycol. 5: 495–504.Google Scholar
  15. Kappers, F. I., 1984. On population dynamics of the cyanobacterium Microcystis aeruginosa. PhD Dissertation, University of Amsterdam, The Netherlands, 175 pp.Google Scholar
  16. Kiefer, D. A. & B. G. Mitchell, 1983. A simple, steady state description of phytoplankton growth based on absorption cross section and quantum efficiency. Limnol. Oceanogr. 28: 770–776.Google Scholar
  17. Komarek, J. & J. W. G. Lund, 1990. What is ‘Spirulina platensis’ in fact? Arch. Hydrobiol./Suppl. 85, Algolog. Stud. 58: 1–13.Google Scholar
  18. Markager, S., 1993. Light absorption and quantum yield for growth in five species of marine macroalgae. J. Phycol. 29: 54–63.Google Scholar
  19. Martel, A., S. Yu, G. Garcia-Reina, P. Lindblad & M. Pedersén, 1992. Osmotic-adjustment in the cyanobacterium Spirulina platensis: presence of an α-glucosidase. Plant Physiol. Biochem. 30: 573–578.Google Scholar
  20. Medlin, L. K., H. J. Elwood, S. Stickel & M. L. Sogin, 1991. Morphological and genetic variation within the diatom Skeletonema costatum (Bacillariophyta): evidence for a new species, Skeletonema pseudocostatum. J. Phycol. 27: 514–524.CrossRefGoogle Scholar
  21. Melack, J. M., 1979. Photosynthesis and growth of Spirulina platensis (Cyanophyta) in an equatorial lake (Lake Simbi, Kenya). Limnol. Oceanogr. 24: 753–760.Google Scholar
  22. Ogawa, T. & S. Aiba, 1978. CO2 assimilation and growth of a bluegreen alga, Spirulina platensis, in continuous culture. J. Appl. Chem. Biotechnol. 28: 515–521.Google Scholar
  23. Ogawa, T. & G. Teruyi, 1970. Studies on the growth of Spirulina platensis. I. On the pure culture of Spirulina platensis. J. Ferment. Technol. 48: 361–367.Google Scholar
  24. Ogawa, T., H. Kozasa & G. Teruyi, 1971. Studies on the growth of Spirulina platensis. II. Growth kinetics of an autotrophic culture. J. Ferment. Technol. 50: 143–149.Google Scholar
  25. Olaizola, M. & E. O. Duerr, 1990. Effects of light intensity and quality on the growth rate and photosynthetic pigment content of Spirulina platensis. J. appl. Phycol. 2: 97–104.Google Scholar
  26. Platt, T. & C. L. Gallegos, 1980. Modelling primary production. In P. G. Falkowski (ed.), Primary productivity in the sea. Plenum Press, New York: 339–362.Google Scholar
  27. Platt, T. & A. D. Jassby, 1976. The relationship between photsynthesis and light for natural assemblages of coastal marine phytoplankton. J. Phycol. 12: 421–430.Google Scholar
  28. Raven, J. A., 1984. A cost-benefit analysis of photon absorption by photosynthetic unicells. New Phytol. 98: 593–625.Google Scholar
  29. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384 pp.Google Scholar
  30. Talling, J. F., 1957. Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytol. 56: 133–149.Google Scholar
  31. Talling, J. F., 1966. Photosynthetic behaviour in stratified and unstratified lake populations of a planktonic diatom. J. Ecol. 54: 99–127.Google Scholar
  32. Talling, J. F., R. B. Wood, M. V. Prosser & R. M. Baxter, 1973. The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshwat. Biol. 3: 53–76.Google Scholar
  33. Tanticharoen, M., M. Reungjitchachawali, B. Bunnag, P. Vonktaveesuk, A. Vonshak & Z. Cohen, 1994. Optimization of λ-linolenic acid (GLA) production in Spirulina platensis. J. appl. Phycol. 6: 295–300.Google Scholar
  34. Tedesco, M. A. & E. O. Duerr, 1989. Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928. J. appl. Phycol. 1: 201–209.Google Scholar
  35. Tilzer, M. M., 1987. Light-dependence of photosynthesis and growth in cyanobacteria: implications for their dominance in eutrophic lakes. New Zealand J. Mar. Freshwat. Res. 21: 401–412.Google Scholar
  36. Van Liere, L., 1979. On Oscillatoria agardhii Gormont, experimental ecology and physiology of a nuisance bloom-forming cyanobacterium. PhD Dissertation, University of Amsterdam, The Netherlands, 98 pp.Google Scholar
  37. Van Liere, L., W. Zevenboom & L. R. Mur, 1975. Growth of Oscillatoria agardhii Gom. Hydrobiol. Bull. 9: 62–70.Google Scholar
  38. Vareschi, E., 1979. The ecology of Lake Nakuru (Kenya). II. Biomass and spatial distribution of fish (Tilapia grahami Boulenger = Sarotherodon alcalicum grahami Boulenger). Oecologia (Berl.) 37: 321–335.Google Scholar
  39. Vareschi, E. & J. Jacobs, 1984. The ecology of Lake Nakuru (Kenya). V. Production and consumption of consumer organisms. Oecologia (Berl.) 61: 83–98.Google Scholar
  40. Vonshak, A., 1990. Recent advances in microbial biotechnology. Biotech. Adv. 8: 709–727.CrossRefGoogle Scholar
  41. Vonshak, A., A. Abeliovich, S. Boussiba, S. Arad & A. Richmond, 1982. Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2: 175–185.CrossRefGoogle Scholar
  42. Vonshak, A. & A. Richmond, 1988. Mass production of Spirulina an overview. Biomass 15: 233–248.CrossRefGoogle Scholar
  43. Vonshak, A., G. Torzillo & L. Tomaseli, 1994. Use of chlorophyll fluorescence to estimate the effect of photoinhibition in outdoor cultures of Spirulina platensis. J. appl. Phycol. 6: 31–34.Google Scholar
  44. Warr, S. R. C., R. H. Reed, J. A. Chudek, R. Foster & W. D. P. Stewart, 1985. Osmotic adjustment in Spirulina platensis. Planta 163: 424–429.Google Scholar
  45. Zarrouk, C., 1966. Contribution a l' étude d'une cyanophycée'. Influence de diverse facteures physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. et Gardner) Geitler. Ph.D. Thesis, University of Paris, France, 74 pp.Google Scholar
  46. Zevenboom, W., J. van der Does, K. Bruning & L. R. Mur, 1981. A non-heterocystous mutant of Aphanizomenon flos-aquae, selected by competition in light-limited continuous culture. FEMS Microbiology Letters 10: 11–16.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Elizabeth Kebede
    • 1
  • Gunnel Ahlgren
    • 1
  1. 1.Institute of LimnologyUppsala UniversityUppsalaSweden

Personalised recommendations