Skip to main content
Log in

Proteolytic and partial sequencing studies of the bifunctional dihydrofolate reductase-thymidylate synthase from Daucus carota

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) of Daucus carota has been further characterized as regards molecular weight, amino acid composition, protease digestion and microsequencing of proteolytic peptides. Data reported in this paper demonstrate that the carrot protein has a calculated M r of 124000 thus indicating that, contrarily to what has previously been suggested, it occurs as a dimer of identical subunits. Results of partial amino acid microsequencing show the presence of sequences highly homologous with those of the active sites of both DHFR and TS from other organisms confirming, at the structural level, the bifunctional nature of the carrot protein. As in the case of Leishmania tropica DHFR-TS, incubation of the carrot protein with V8 protease led to a rapid loss of TS activity while retaining that of DHFR. However the pattern of proteolysis did not allow to establish whether the sequence of domains is DHFR-TS as in Leishmania, or vice versa. Low homology of other amino acid sequences, as judged by computer analysis, and absence of common epitopes indicate an apparent divergence between carrot and leishmanian proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albani D, Parisi B, Carbonera D, Cella R: Dihydrofolate reductase from Daucus carota cell suspension cultures: purification, molecular and kinetic characterization. Plant Biol Mol 5: 363–372 (1985).

    Google Scholar 

  2. Bachmann B, Follmann H: Deoxyribonucleotide biosynthesis in green algae: characterization of thymidylate synthase-dihydrofolate reductase in Scenedesmus obliquus. Arch Biochem Biophys 256: 244–252 (1987).

    PubMed  Google Scholar 

  3. Beverley SM, Ellemberger TE, Cordingley JS: Primary structure for the gene encoding the bifunctional dihydrofolate reductase-thymidylate synthase of Leishmania major. Proc Natl Acad Sci USA 83: 2584–2588 (1986).

    PubMed  Google Scholar 

  4. Blakley RL: Dihydrofolate reductase. In: Blakely RL, Benkovic SJ (eds) Folates and Pteridines, vol 1, pp. 191–253. John Wiley, New York (1984).

    Google Scholar 

  5. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analyt Biochem 72: 248–254 (1976).

    Article  PubMed  Google Scholar 

  6. Bzik DJ, Wu-Bo Li, Horii T, Inselburg J: Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene. Proc Natl Acad Sci USA 84: 8360–8364 (1987).

    PubMed  Google Scholar 

  7. Cella R, Albani D, Carbonera D, Etteri L, Maestri E, Parisi B: Selection of methotrexate-resistant cell lines in Daucus carota: biochemical analysis and genetic characterization by protoplast fusion. J Plant Physiol 127: 135–146 (1987).

    Google Scholar 

  8. Cella R, Nielsen E, Parisi B: Daucus carota cells contain a dihydrofolate reductase-thymidylate synthase bifunctional polypeptide. Plant Mol Biol 10: 331–338 (1988).

    Google Scholar 

  9. Edman JC, Edman U, Ming Cao, Lundgren B, Kovacs JA, Santi D: Isolation and expression of the Pneumocystis carinii dihydrofolate reductase gene. Proc Natl Acad Sci USA 86: 8625–8629 (1989).

    PubMed  Google Scholar 

  10. Ferone R, Roland S: Dihydrofolate reductase: thymidylate synthase, a bifunctional polypeptide from Crithidia fasciculata. Proc Natl Acad Sci USA 77: 5802–5806 (1980).

    PubMed  Google Scholar 

  11. Fling ME, Kopf J, Richards CA: Nucleotide sequence of the dihydrofolate reductase gene of Saccharomyces cerevisiae. Gene 63: 165–174 (1988).

    Article  PubMed  Google Scholar 

  12. Garvey EP, Santi DV: Limited proteolysis of the bifunctional thymidylate synthase-dihydrofolate reductase from Leishmania tropica. Proc Natl Acad Sci USA 82: 7188–7192 (1985).

    PubMed  Google Scholar 

  13. Grumont R, Washtien WL, Caput D, Santi DV: Bifunctional thymidylate synthase-dihydrofolate reductase from Leishmania tropica: Sequence homology with the corresponding monofunctional proteins. Proc Natl Acad Sci USA 83: 5387–5391 (1986).

    PubMed  Google Scholar 

  14. Honess RW, Bodemer W, Cameron KR, Niller HH, Fleckenstein B, Randall RE: The A+T-rich genome of Herpesvirus saimiri contains a highly conserved gene for thymidylate synthase. Proc Natl Acad Sci USA 83: 3604–3608 (1986).

    PubMed  Google Scholar 

  15. Laemmli K: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).

    PubMed  Google Scholar 

  16. Martin RG, Ames BN: A method for determining the sedimentation behavior of enzymes. Application to protein mixtures. J Biol Chem 236: 1372–1379 (1972).

    Google Scholar 

  17. Mattick JS, Tsukamoto Y, Nickless J, Wakil SJ: The architecture of the animal fatty acid synthetase. I. Proteolytic dissection and peptide mapping. J Biol Chem 258: 15291–15299 (1983).

    PubMed  Google Scholar 

  18. Meek TD, Garvey EP, Santi DV: Purification and characterization of the bifunctional thymidylate synthase-dihydrofolate reductase from methotrexate-resistant Leishmania tropica. Biochemistry 24: 678–686 (1985).

    PubMed  Google Scholar 

  19. Moore S: Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J Biol Chem 243: 6281–6287 (1968).

    PubMed  Google Scholar 

  20. Nielsen E, Cella R: Thymidylate synthase in plant cells: kinetic and molecular properties of the enzyme from Daucus carota L. cell cultures. Plant Cell Physiol 29: 503–508 (1988).

    Google Scholar 

  21. Osborn MJ, Huennekens FM: Enzymatic reduction of dihydrofolic acid. J Biol Chem 258: 10956–10959 (1958).

    Google Scholar 

  22. Price EL, Smith PL, Klein TE, Freisheim JH: Photoaffinity analogues of methotrexate as folate antagonist binding probes. 1. Photoaffinity labelling of murine L1210 dihydrofolate reductase and amino acid sequence of the binding region. Biochemistry 26: 4751–4756 (1987).

    PubMed  Google Scholar 

  23. Pucci P, Sannia G, Marino G: Separation of phenylthiohydantoin-amino acids by high-performance liquid chromatography. J Chromat 270: 371–377 (1983).

    Article  Google Scholar 

  24. Santi DV, Danenberg PV: Folates in pyrimidine nucleotide biosynthesis. In: Blakley RL, Benkovic SJ, Folates and Pteridines, vol. 1, pp. 343–396. John Wiley Sons, New York (1984).

    Google Scholar 

  25. Siegel LM, Monty KJ: Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sufite and hydroxylamine reductases. Biochim Biophys Acta 112: 346–362 (1966).

    PubMed  Google Scholar 

  26. Smith SL, Patrick P, Stone D, Phillip AW, Burchall JJ: Porcine liver dihydrofolate reductase. Purification, properties and amino acid sequence. J Biol Chem 254: 11475–11484 (1979).

    PubMed  Google Scholar 

  27. Spencer RL, Wold F: A new convenient method for estimation of total cystine-cysteine in proteins. Anal Biochem 32: 185–189 (1969).

    PubMed  Google Scholar 

  28. Stone D, Phillips AW: The amino acid sequence of dihydrofolate reductase from L1210 cells. FEBS Lett 74: 85–87 (1977).

    Article  PubMed  Google Scholar 

  29. Swenson RP, Williams CHJr, Massey V, Ronchi S, Minchiotti L, Galliano M, Curti B: The primary structure of D-amino acid oxidase from pig kidney. I. Isolation and sequence of the tryptic eptides. J Biol Chem 257: 8817–8823 (1982).

    PubMed  Google Scholar 

  30. Takeishi K, Kaneda S, Ayusawa D, Shimizu K, Gotoh O, Seno T: Nucleotide sequence of a functional cDNA for thymidylate synthase. Nucl Acids Res 13: 2035–2043 (1985).

    PubMed  Google Scholar 

  31. Taylor GR, Lagosky PA, Storms RK, Haynes RH: Molecular characterization of the cell cycle-regulated thymidylate synthase of Saccharomyces cerevisiae. J Biol Chem 262: 5298–5307 (1987).

    PubMed  Google Scholar 

  32. Towbin HT, Staehelin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some application. Proc Natl Acad Sci USA 76: 4350–4354 (1979).

    PubMed  Google Scholar 

  33. Woese CR: Bacterial evolution. Microbiol Rev 51: 221–271 (1987).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cella, R., Carbonera, D., Orsi, R. et al. Proteolytic and partial sequencing studies of the bifunctional dihydrofolate reductase-thymidylate synthase from Daucus carota . Plant Mol Biol 16, 975–982 (1991). https://doi.org/10.1007/BF00016070

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016070

Key words

Navigation