Skip to main content
Log in

‘Circadian clock’ directs the expression of plant genes

  • Update Section
  • Mini Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

Lhc :

genes encoding proteins of the light-harvesting complex of PSI/PSII (ref. 16; old nomenclature is given in { })

rbcS and rbcL :

genes encoding the small and large subunit of Rubisco, respectively

elip :

gene encoding early light-induced protein

psbA :

quinone-binding protein

psaA :

gene encoding P700 protein of PSI

chl:

chlorophyll

References

  1. Adamska I, Scheel B, Kloppstech K: Circadian oscillations of nuclear-encoded chloroplast proteins in pea (Pisum sativum). Plant Mol Biol 17: 1055–1065 (1991).

    PubMed  Google Scholar 

  2. Alosi MC, Neale DB, Kinlaw CS: Expression of cab genes in douglas-fir is not strongly regulated by light. Plant Physiol 93: 829–832 (1990).

    Google Scholar 

  3. Beator J, Pötter E, Kloppstech K: The effect of heat shock on morphogenesis in barley. Plant Physiol 100: 1780–1786 (1992).

    Google Scholar 

  4. Becker TW, Foyer C, Caboche M: Light-regulated expression of the nitrate-reductase and nitrite-reductase genes in tomato and in the phytochrome-deficient aurea mutant of tomato. Planta 188: 39–47 (1992).

    Article  Google Scholar 

  5. Becker TW, Caboche M, Carrayol E, Hirel B: Nucleotide sequence of a tobacco cDNA encoding plastidic glutamine synthetase and light inducibility, organ specificity and diurnal rhythmicity in the expression of the corresponding genes of tobacco and tomato. Plant Mol Biol 19: 367–379 (1992).

    PubMed  Google Scholar 

  6. Brusslan A, Tobin EM: Light independent developmental regulation of cab gene expression in Arabidopsis thaliana seedlings. Proc Natl Acad Sci USA 89: 7791–7795 (1992).

    PubMed  Google Scholar 

  7. Bünning E: Die physiologische Uhr. Springer-Verlag, Berlin/Heidelberg/New York (1977).

    Google Scholar 

  8. Busheva M, Garab G, Liker E, Toth Z, Szell M, Nagy F: Diurnal fluctuations in the content and functional properties of the light harvesting chlorophyll a/b complex in thylakoid membranes. Plant Physiol 95: 997–1003 (1991).

    Google Scholar 

  9. Cremer F, Dommes J, Van deWalle C, Bernier G: Diurnal rhythmicity in the pattern of mRNAs in the leaves of Sinapis alba. Plant Physiol 94: 1590–1597 (1990).

    Google Scholar 

  10. Cremer F, Van deWalle C, Bernier G: Changes in mRNA level rhythmicity in the leaves of Sinapis alba during a lengthening of the photoperiod which induces flowering. Plant Mol Biol 17: 465–473 (1991).

    PubMed  Google Scholar 

  11. Deng M, Moureaux T, Leydecker MT, Caboche M: Nitrate-reductase expression is under the control of a circadian rhythm and is light inducible in Nicotiana tabacum leaves. Planta 180: 257–261 (1990).

    Article  Google Scholar 

  12. Ernst D, Apfelböck A, Bergmann A, Weyrauch C: Rhythmic regulation of the light-harvesting chlorophyll a/b protein and the small subunit of ribulose-1,5-bisphosphate carboxylase mRNA in rye seedlings. Photochem Photobiol 52: 29–33 (1990).

    PubMed  Google Scholar 

  13. Fejes E, Pay A, Kanevsky I, Szell M, Adam E, Kay SA, Nagy F: A 268 bp upstream sequence mediates the circadian clock-regulated transcription of the wheat cab-1 gene in transgenic plants. Plant Mol Biol 15: 921–932 (1990).

    PubMed  Google Scholar 

  14. Gagne G, Guertin M: The early genetic response to light in the green unicellular alga Chlamydomonas eugametos grown under light/dark cycles involves genes that represent direct responses to light and photosynthesis. Plant Mol Biol 18: 429–445 (1992).

    PubMed  Google Scholar 

  15. Galangau F, Daniel-Vedele F, Moureaux T, Dobre MF, Leydecker MT, Caboche M: Expression of leaf nitrate reductase genes from tomato and tobacco in relation to light-dark regimes and nitrate supply. Plant Physiol 88: 383–388 (1988).

    Google Scholar 

  16. Giuliano G, Hoffman NE, Ko K, Scolnik PA, Cashmore AR: Light-entrained circadian clock controls transcription of several plant genes. EMBO J 7: 3635–3642 (1988).

    PubMed  Google Scholar 

  17. Green BR, Pichersky E, Kloppstech K: Chlorophyll a/b-binding proteins: an extended family. Trends Biochem Sci 16: 181–186 (1991).

    Article  PubMed  Google Scholar 

  18. Jansson S, Pichersky E, Bassi R: Green BR, Ikeuchi M, Melis A, Simpson DJ, Spangfort M, Staehelin LA, Thornber JP: A nomenclature for the genes encoding the chlorophyll a/b-binding proteins of higher plants. Plant Mol Biol Rep 10: 242–253 (1992).

    Google Scholar 

  19. Johnson CH, Hastings JW: The elusive mechanism of the circadian clock. Am Scient 74: 29–36 (1986).

    Google Scholar 

  20. Kay SA, Nagatani A, Keith B, Deak M, Furuya M, Chua NH: Rice phytochrome is biologically active in transgenic tobacco. Plant Cell 1: 775–782 (1989).

    Article  PubMed  Google Scholar 

  21. Kay SA, Millar AJ: Circadian regulated cab gene expression in higher plants. In: M.Young (ed) The Molecular Biology of Circadian Rhythms. Marcel Dekker, New York (1992).

    Google Scholar 

  22. Kellmann JW, Pichersky E, Piechulla B: Analysis of the diurnal expression patterns of the tomato chlorophyll a/b binding protein genes. Influence of light and characterization of the gene family. Photochem Photobiol 52: 35–41 (1990).

    PubMed  Google Scholar 

  23. Kellmann JW, Merforth N, Wiese M, Pichersky E, Piechulla B: Concerted circadian transcript level oscillations of nineteen Lhca/b (cab) genes in Lycopersicon esculentum (tomato). Mol Gen Genet, in press (1993).

  24. Kloppstech K: Diurnal and circadian rhythmicity in the expression of light-induced plant nuclear messenger RNAs. Planta 165: 502–506 (1985).

    Google Scholar 

  25. Kloppstech K, Otto B, Sierralta W: Cyclic temperature treatments of dark-grown pea seedlings induce a rise in specific transcript levels of light-regulated genes related to photomorphogenesis. Mol Gen Genet 225: 468–473 (1991).

    Article  PubMed  Google Scholar 

  26. Lam E, Chua NH: Light to dark transition modulates the phase of antenna chlorophyll protein gene expression. J Biol Chem 264: 20175–20176 (1989).

    PubMed  Google Scholar 

  27. LaRoche J, Mortain-Bertrand A, Falkowski PG: Light intensity-induced changes in cab mRNA and light harvesting complex II apoprotein levels in the unicellular chlorophyte Dunaliella tertiolecta. Plant Physiol 97: 147–153 (1990).

    Google Scholar 

  28. Lumsden PJ: Circadian rhythms and phytochrome. Annu Rev Plant Physiol Plant Mol Biol 42: 351–371 (1991).

    Article  Google Scholar 

  29. Martino-Catt S, Ort DR: Low temperature interrupts circadian regulation of transcriptional activity in chilling-sensitive plants. Proc Natl Acad Sci USA 89: 3731–3735 (1992).

    PubMed  Google Scholar 

  30. McCormac DJ, Greenberg BM: Differential synthesis of photosystem cores and light-harvesting antenna during proplastid to chloroplast development in Spirodela oligorrhiza. Plant Physiol 98: 1011–1019 (1992).

    Google Scholar 

  31. Meyer H, Thienel U, Piechulla B: Molecular characterization of the diurnal/circadian expression of the chlorophyll a/b-binding proteins in leaves of tomato and other dicotyledonous and monocotyledonous plant species. Planta 180: 5–15 (1989).

    Google Scholar 

  32. Millar AJ, Kay SA: Circadian control of cab gene transcription and mRNA accumulation in Arabidopsis. Plant Cell 3: 541–550 (1991).

    Article  PubMed  Google Scholar 

  33. Millar AJ, Short SR, Chua NH, Kay SA: A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4: 1075–1087 (1992).

    Article  PubMed  Google Scholar 

  34. Nagy F, Kay SA, Chua NH: A circadian clock regulates transcription of the wheat cab-1 gene. Genes Devel 2: 376–382 (1988).

    Google Scholar 

  35. Nevo E, Meyer H, Piechulla B: Diurnal rhythms of the chlorophyll a/b binding protein mRNAs in wild emmer wheat and wild barley in the Fertile Crescent. Proc Roy Soc, in press.

  36. Otto B, Grimm B, Ottersbach P, Kloppstech K: Circadian control of the accumulation of mRNAs for light- and heat-inducible chloroplast proteins in pea (Pisum sativum L.). Plant Physiol 88: 21–25 (1988).

    Google Scholar 

  37. Paulsen H, Bogorad L: Diurnal and circadian rhythms in the accumulation and synthesis of mRNA for the light-harvesting chlorophyll a/b-binding protein in tobacco. Plant Physiol 88: 1104–1109 (1988).

    Google Scholar 

  38. Peter HJ, Krüger-Alef C, Knogge W, Brinkmann K, Weissenböck G: Diurnal periodicity of chalcone-synthase activity during the development of oat primary leaves. Planta 183: 409–415 (1991).

    Article  Google Scholar 

  39. Piechulla B, Gruissem W: Diurnal mRNA fluctuations of nuclear and plastid genes in developing tomato fruits. EMBO J 6: 3593–3599 (1987).

    PubMed  Google Scholar 

  40. Piechulla B: Plastid and nuclear mRNA fluctuations in tomato leaves — diurnal and circadian rhythmicity during extended dark and light periods. Plant Mol Biol 11: 345–353 (1988).

    Google Scholar 

  41. Piechulla B: Changes of the diurnal and circadian (endogenous) mRNA oscillations of the chlorophyll a/b binding protein in tomato leaves during altered day/night (light/dark) regimes. Plant Mol Biol 12: 317–327 (1989).

    Google Scholar 

  42. Piechulla B, Riesselmann S: Effect of temperature alterations on the diurnal expression pattern of the chlorophyll a/b binding proteins in tomato seedlings. Plant Physiol 94: 1903–1906 (1990).

    Google Scholar 

  43. Piechulla B, Kellmann JW, Pichersky E, Schwartz E, Förster HH: Determination of steady-state mRNA levels of individual chlorophyll a/b binding protein genes of the tomato cab gene family. Mol Gen Genet 230: 413–422 (1991).

    Article  PubMed  Google Scholar 

  44. Pilgrim ML, Onega T, Goudie K, McClung CR: Circadian regulation of gene expression in Arabidopsis. In: Molecular Biology of Plant Growth and Development. Third International Congress of Plant Molecular Biology, abstract 1884 (1991).

  45. Prioul JL, Reyss A: Rapid variation of the mRNA of the small subunit of ribulose-1,5-bisphosphate carboxylase of mature tobacco leaves in response to localised changes in light quantity. Relationship between the activity and quantity of the enzyme. Planta 174: 488–494 (1988).

    Google Scholar 

  46. Redinbaugh MG, Sabre M, Scandalios JG: Expression of the maize cat3 catalase gene is under the influence of a circadian rhythm. Proc Natl Acad Sci USA 87: 6853–6857 (1990).

    PubMed  Google Scholar 

  47. Riens B, Heldt HW: Decrease of nitrate reductase activity in spinach leaves during a light-dark transition. Plant Physiol 98: 573–577 (1992).

    Google Scholar 

  48. Riesselmann S, Piechulla B: Effect of dark phases and temperature on the chlorophyll a/b binding protein mRNA level oscillations in tomato seedlings. Plant Mol Biol 14: 605–616 (1990).

    PubMed  Google Scholar 

  49. Riesselmann S, Piechulla B: Diurnal and circadian light-harvesting complex and quinone B-binding protein synthesis in leaves of tomato (Lycopersicon esculentum). Plant Physiol 100: 1840–1845 (1992).

    Google Scholar 

  50. Sheen J: Metabolic repression of transcription in higher plants. Plant Cell 2: 1027–1038 (1990).

    Article  PubMed  Google Scholar 

  51. Spiller SC, Kaufman LS, Thompson WF, Briggs WR: Specific mRNA and rRNA levels in greening pea leaves during recovery from iron-stress. Plant Physiol 84: 409–414 (1987).

    Google Scholar 

  52. Stayton MM, Brosio P, Dunsmuir P: Photosynthetic genes of petunia (Mitchell) are differentially expressed during the diurnal cycle. Plant Physiol 89: 776–782 (1989).

    Google Scholar 

  53. Sweeney BM: Rhythmic Phenomena in Plants. Academic press, San Diego (1987).

    Google Scholar 

  54. Tavladoraki P, Argyroudi-Akoyunoglou J: Circadian rhythm and phytochrome control of LHC-I gene transcription. FEBS Lett 255: 305–308 (1989).

    Article  Google Scholar 

  55. Tavladoraki P, Kloppstech K, Argyroudi-Akoyunoglou J: Circadian rhythm in the expression of the mRNA coding for the apoprotein of the light-harvesting complex of photosystem II. Plant Physiol 90: 665–672 (1989).

    Google Scholar 

  56. Taylor WC: Transcriptional regulation by a circadian rhythm. Plant Cell 1: 259–264 (1989).

    Article  PubMed  Google Scholar 

  57. Thomas M, Cretin C, Vidal J, Keryer E, Gadal P, Monsinger: Light-regulation of phosphoenolpyruvate carboxylase mRNA in leaves of C4 plants: evidence for phytochrome control on transcription during greening and for rhythmicity. Plant Sci 69: 65–78 (1990).

    Article  Google Scholar 

  58. Vince-Prue D: The duration of light and photoperiodic responses. In: Kendrik RE, Kronenberg GHM (eds) Photomorphogenesis in Plants, pp. 269–305. Martinus Nijhoff/Dr. W Junk Publishers, Dordrecht, Netherlands (1986).

    Google Scholar 

  59. Wehmeyer B, Cashmore AR, Schäfer E: Photocontrol of the expression of genes encoding chlorophyll a/b binding proteins and small subunit of ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (L.) and Nicotiana tabacum (L.). Plant Physiol 93: 990–997 (1990).

    Google Scholar 

  60. Yamamoto N, Mukai Y, Matsuoka M, Kano-Murakami Y, Tanaka Y, Ohashi Y, Ozeki Y, Odani K: Light-independent expression of cab and rbcS genes in dark-grown pine seedlings. Plant Physiol 97: 1487–1493 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piechulla, B. ‘Circadian clock’ directs the expression of plant genes. Plant Mol Biol 22, 533–542 (1993). https://doi.org/10.1007/BF00015982

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00015982

Keywords

Navigation