Skip to main content
Log in

Compact shear specimen for wood mode II fracture investigations

  • Published:
International Journal of Fracture Aims and scope Submit manuscript


A mode II fracture specimen has been developed from experimental and numerical investigation for applications with wood. Development centered on the compact shear specimen and addressed the extreme orthotropy of both the elastic and strength properties of wood. Mode II fracture toughness was assessed from test data gathered for southern pine and Douglas-fir specimens combined with use of quarter-point singular finite elements. Evidence is provided that this specimen is suitable for investigators to employ in fracture studies with highly orthotropic materials.


On a développé une éprouvette d'essai de rupture en mode II à partir de recherches expérimentales et numériques en vue d'être appliquées au bois. On a focalisé le développement sur une éprouvette compacte de cisaillement, conçue de manière à mettre en valeur l'orthotropie extrême des propriétés élastiques et de la résistance du bois. On a établi la ténacité à la rupture sous mode II à partir de données d'essais sur des échantillons de pin méridional et de pin Douglas, combinées à une analyse par éléments finis à singularité quart-points. On montre à évidence que ce type d'éprouvette convient à des recherches sur la rupture de matériaux à orthotropie particulièrement élevée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. D.L. Jones and D.B. Chisolm, Engineering Fracture Mechanics 7 (1975) 261–270.

    Article  Google Scholar 

  2. D.B. Chisolm and D.L. Jones, Experimental Mechanics 17 (1977) 7–13.

    Google Scholar 

  3. D. Noyniak and J.C. Conway, Engineering Fracture Mechanics 12 (1979) 301–306.

    Article  Google Scholar 

  4. R.A. Riddle, R.D. Streit and I. Finnie, Journal of Engineering Materials and Technology, American Society of Mechanical Engineers, 150 (1983) 268–272.

    Google Scholar 

  5. E.M. Wu, Journal of Applied Mechanics 12 (1967) 967–974.

    Google Scholar 

  6. J.G. Williams and M.W. Birch, in Cracks and Fracture, ASTM STP 601, American Society of Testing and Materials (1976) 125–137.

  7. J.D. Barrett and R.O. Foschi, Canadian Journal of Civil Engineering 4(1) (1977) 86–95.

    Google Scholar 

  8. J.D. Barrett and R.O. Foschi, Engineering Fracture Mechanics 9 (1977) 371–378.

    Article  Google Scholar 

  9. D.G. Hunt and W.P. Croager, Journal of Materials Science Letters 1 (1982) 77–79.

    Article  Google Scholar 

  10. F.W. Smith and D.T. Penney, Wood Science 12(4) (1980) 227–235.

    Google Scholar 

  11. J.F. Murphy, Strength of Wood Beams with End Splits, U.S. Department of Agriculture Forest Service Paper FPL347 (1979).

  12. K. Okusa, Bulletin of the Faculty of Agriculture, Kagoshima University, Japan 33 (1983) 193–202.

    Google Scholar 

  13. C. Boontanjai, “The Fracture Toughness Properties of Pinus Radiata”, Master's thesis, University of Aukland, New Zealand (1979).

  14. P.J. Pellicane, “Ultimate Tensile Strength Analysis of Wood”, Ph.D. dissertation, Department of Forest and Wood Sciences, Colorado State University, Fort Collins, Colorado, USA (1980).

  15. G.R. DeBaise, Journal of Materials 7(4) (1972) 568–572.

    Google Scholar 

  16. American Society for Testing and Materials, The Annual Book of ASTM Standards, Section 4, Construction, Volume 04.09: Wood. Philadelphia, Pennsylvania (1985).

  17. S. Mall, J.F. Murphy and J.E. Shottafer, Journal of Engineering Mechanics, American Society of Civil Engineers 109(3) (1983) 680–690.

    Google Scholar 

  18. R.D. Henshell and K.G. Shaw, International Journal for Numerical Methods in Engineering 9 (1975) 495–507.

    Google Scholar 

  19. L. Banks-Sills and Y. Bortman, International Journal of Fracture 25 (1984) 169–180.

    Google Scholar 

  20. V. Murti, S. Valliappan, and I. Lee, Journal of Engineering Mechanics, American Society of Civil Engineers 111(2) (1985) 203–217.

    Google Scholar 

  21. G.C. Sih and H. Liebowitz, in Fracture, An Advanced Treatise, Volume II, Academic Press, New York (1968) Chapter 2.

    Google Scholar 

  22. K.R. Gandhi, Journal of Strain Analysis 7(3) (1972) 157–162.

    Google Scholar 

  23. A.D. Pugel, “Fracture Mechanism-Based Failure Criterion for the Tensile Strength of Wood”, Ph.D. dissertation, Department of Forest and Wood Sciences, Colorado State University, Fort Collins, Colorado, USA (1986).

  24. J. Bodig and J.R. Goodman, Wood Science 5(4) (1973) 249–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Cramer, S.M., Pugel, A.D. Compact shear specimen for wood mode II fracture investigations. Int J Fract 35, 163–174 (1987).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: