Skip to main content
Log in

Algal picoplankton production and contribution to food-webs in oligotrophic British Columbia lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The pelagic communities of two contrasting oligotrophic lakes in British Columbia were studied to determine why an interior, dimictic lake (Quesnel) supports a greater biomass of zooplankton and produces larger planktivorous sockeye salmon (Oncorhynchus nerka) than a coastal warm-monomictic lake (Sproat). The ultra-oligotrophic status and differing planktivore densities in Sproat Lake increased the relative importance of algal picoplankton, diminished the abundance of large zooplankton, and increased the significance of rotifers and other small-bodied zooplankton. These picoplankton based food webs result in longer, indirect and less efficient pathways of carbon flow from phytoplankton to fish. In contrast, Quesnel Lake is a more productive oligotrophic lake and its pelagic food webs are based more on nanoplankton and small microphytoplankton that support larger-bodied zooplankton (Daphnia, Diaptomus), and a more direct and efficient two-step transfer to fish. The greater variability of the annual recruitment of sockeye fry in interior lakes may keep zooplankton communities in a non-steady state, this in turn may perpetuate the occurrence of quadrennial cyclic dominance in adult salmon returning to these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • American Public Health Association, American Water Works Association and Water Pollution Control Federation. 1976. Standard Methods for the examination of water and Wastewater. 14th ed. Washington, D. C. 1193 p.

  • Bergquist, A. M., S. R. Carpenter & J. C. Latino, 1985. Shifts in phytoplankton size structure and community composition during grazing by contrasting zooplankton assemblages. Limnol. Oceanogr. 30: 1037–1045.

    Google Scholar 

  • Bogdan, K. G. & J. J. Gilbert, 1987. Quantitative comparison of food niches in some freshwater zooplankton. Oecologia 72: 331–340.

    Google Scholar 

  • Brett, J. R., 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am. Zool. 11: 99–113.

    Google Scholar 

  • Caron,D. A., F. R. Pick & D. R. S. Lean, 1985. Chroococcoid cyanobacteria in Lake Ontario: vertical and seasonal distributions during 1982. J. Phycol. 21: 171–175.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Google Scholar 

  • Edmondson, W. T., 1985. Reciprocal changes in abundance of Diaptomus and Daphnia in Lake Washington. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 475–481.

    Google Scholar 

  • Edmondson, W. T. & J. T. Lehman, 1981. The effect of changes in the nutrient income on the condition of Lake Washington. Limnol. Oceanogr. 26: 1–29.

    Google Scholar 

  • Fenchel, T., 1986. The ecology of heterotrophic microflagellates, p. 57–97. In K. C. Marshall. [ed.] Advances in microbial ecology, Plenum Press, New York and London.

    Google Scholar 

  • Gilbert, J. J. & K. G. Bogdan, 1984. Rotifer grazing: in situ studies on selectivity and rates, p. 97–133. In D. G. Meyers & J. R. Strickler [eds.] Trophic interactions within aquatic ecosystems. AAAS Selected Symposium 85, Westview Press.

  • Gliwicz, Z. M., 1980. Filtering rates, food size selection, and feeding rates in cladocerans — another aspect of interspecific competition in filter-feeding zooplankton. In W. C. Kerfoot [ed.] Evolution and ecology of zooplankton communities, University Press New England: p. 282–291.

  • Goodlad, J. C., T. W. Gjernes & E. L. Brannon, 1974. Factors affecting sockeye salmon (Oncorhynchus nerka) growth in four lakes of the Fraser River system. J. Fish. Res. Bd Can. 31: 871–892.

    Google Scholar 

  • Haney, J. F. & D. J. Hall, 1973. Sugar-coated Daphnia: a preservation technique for cladocera. Limnol. Oceanogr. 10: 331–333.

    Google Scholar 

  • Hyatt, K. D. & J..G. Stockner, 1985. Responses of sockeye salmon (Oncorhynchus nerka) to fertilization of British Columbia coastal lakes. Can. J. Fish. Aquat. Sci. 42: 320–331.

    Google Scholar 

  • Hyatt, K. D. & G. J. Steer, 1987. Barkley Sound sockeye salmon (Oncorhynchus nerka): evidence for over a century of successful stock development, fisheries management, research, and enhancement effort, p. 435–457. In H. D. Smith, L. Margolis, and C. C. Wood (ed.) Sockeye salmon (Oncorhynchus nerka) population biology and future management. Can. Spec. Publ. Fish. Aquat. Sci. 96.

  • Infante, A. & W. T. Edmondson, 1985. Edible phytoplankton and herbivorous zooplankton in Lake Washington. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 161–171.

    Google Scholar 

  • Infante, A. & A. H. Litt, 1985. Differences between two species of Daphnia in the use of 10 species of algae in Lake Washington. Limnol. Oceanogr. 30: 1053–1059.

    Google Scholar 

  • LeBrasseur, R. J., C. D. McAllister, W. E. Barraclough, O. D. Kennedy, J. Manzer, D. Robinson & K. Stephens, 1988. Enhancement of sockeye salmon (Oncorhynchus nerka) by lake fertilization in Great Central Lake: Summary report. J. Fish. Res. Bd Can. 35: 1500–1596.

    Google Scholar 

  • Levy, D. A., 1987. Review of the ecological significance of diel vertical migrations by juvenile sockeye salmon (Oncorhynchus nerka), p. 44–52. In H. D. Smith, L. Margolis, and C. C. Wood (ed.) Sockeye salmon (Oncorhynchus nerka) population biology and future management. Can. Spec. Publ. Fish. Aquat. Sci. 96.

  • MacIsaac, E. A. & J. G. Stockner, 1985. Current trophic state and potential impacts of coal mine development on productivity of Middle Quinsam and Long lakes. Can Tech. Rep. Fish. Aquat. Sci. 1381: 63 pp.

  • McCauley, E. & J. A. Downing, 1985. The prediction of cladoceran grazing rate spectra. Limnol. Oceanogr. 30: 202–212.

    Google Scholar 

  • Northcote, T. G., C. J. Walters & J. M. B. Hume, 1978. Initial impacts of experimental fish introductions on the macrozooplankton of small oligotrophic lakes. Verh. Int. Ver. Limnol. 20: 2003–2012.

    Google Scholar 

  • O'Neill, S. M. & K. D. Hyatt, 1987. An experimental study of competition for food between sockeye salmon (Oncorhynchus nerka) and threespine sticklebacks (Gasterosteus aculeatus) in a British Columbia coastal lake, p. 143–160. In H. D. Smith, L. Margolis, and C. C. Wood (ed.) Sockeye salmon (Oncorhynchus nerka) population biology and future management. Can. Spec. Publ. Fish. Aquat. Sci. 96.

  • Pomeroy, L. R., 1984. Significance of microorganisms in carbon and energy flow in marine ecosystems. In M. J. Klug & C. A. Reddy (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC. 710 p.

    Google Scholar 

  • Porter, K. G., Y. Feig & E. Vetter, 1983. Morphology, flow regimes, and filtering rates of Daphnia, Ceriodaphnia and Bosmina fed natural bacterioplankton. Oecologia 50: 156–163.

    Google Scholar 

  • Riemann, B. & M. Sondergaard, 1986. Regulation of bacterial secondary production in two eutrophic lakes and in experimental enclosures. J. Plankton Res. 8: 519–536.

    Google Scholar 

  • Scavia, D., G. L. Fahnenstiel, M. S. Evans, D. J. Jude & J. T. Lehman, 1986. Influence of salmonid predation and weather on long-term water quality trends in Lake Michigan. Can. J. Fish. Aquat. Sci. 43: 435–443.

    Google Scholar 

  • Sherr, E. B., B. F. Sherr & G. A. Paffenhofer, 1986. Phagotrophic protozoa as food for metazoans: A ‘missing’ link in marine pelagic food webs? Mar. Microb. Food Webs 1: 61–80.

    Google Scholar 

  • Siegfried, C. A., 1987. Large-bodied crustacea and rainbow smelt in Lake George, New York: trophic interactions and phytoplankton community composition. J. Plankton Res. 9: 27–39.

    Google Scholar 

  • Simon, M. & M. M. Tilzer, 1987. Bacterial response to seasonal changes in primary production and phytoplankton biomass in Lake Constance. J. Plankton Res. 9: 535–552.

    Google Scholar 

  • Sprules, W. G., L. B. Holtby & G. Griggs, 1981. A microcomputer-based measuring device for biological research. Can. J. Zool. 59: 1611–1614.

    Google Scholar 

  • Stainton, M. P., M. J. Capel & F. A. J. Armstrong, 1977. The chemical analysis of freshwater. 2nd. Ed. Can Fish. Mar. Serv. Misc. Spec. Publ. 25, 180 p.

  • Stemberger, R. S. & J. J. Gilbert, 1985. Assessment of threshold food levels and population growth in planktonic rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 269–275.

    Google Scholar 

  • Stephens, K. & R. J.Brandstaetter, 1983. A laboratory manual, collected methods for the analysis of water. Can. Tech. Rep. Fish. Aquat. Sci. 1159: 68 p.

  • Stockner, J. G.,1987. Lake fertilization: the enrichment cycle and lake sockeye salmon (Oncorhynchus nerka) production, p. 198–215. In H. D. Smith, L. Margolis, and C. C. Wood (ed.) Sockeye salmon (Oncorhynchus nerka) population biology and future management. Can. Spec. Publ. Fish. Aquat. Sci. 96.

  • Stockner, J. G. & A. C. Costella, 1980. The paleolimnology of eight sockeye salmon (Oncorhynchus nerka) nursery lakes in British Columbia, Canada. Can. Tech. Rep. Fish. Aquat. Sci. No. 979, 93 p.

  • Stockner, J. G. & K. S. Shortreed, 1983. A comparative limnological survey of 19 sockeye salmon (Oncorhynchus nerka) nursery lakes in the Fraser River system, British Columbia. Can. Tech. Rept. Fish. Aquat. Sci. No. 1190, 34 p.

  • Stockner, J. G. & K. S. Shortreed, 1985. Whole-lake fertilization experiments in coastal British Columbia lakes: empirical relationships between nutrient inputs and phytoplankton biomass and production. Can. J. Fish. Aquat. Sci. 42: 649–650.

    Google Scholar 

  • Strickland, J. D. H., 1960. Measuring the production of marine phytoplankton. Bull. Fish. Res. Bd Can. 122.173 p.

  • Suttle, C. A. & P. J. Harrison, 1988. Ammonium and phosphate uptake rates, N: P supply ratios, and evidence for N and P limitation in some oligotrophic lakes. Limnol. Oceanigr. 33: 186–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stockner, J.G., Shortreed, K.S. Algal picoplankton production and contribution to food-webs in oligotrophic British Columbia lakes. Hydrobiologia 173, 151–166 (1989). https://doi.org/10.1007/BF00015525

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00015525

Key words

Navigation