Skip to main content
Log in

Planktonic bacterial biomass and seasonal pattern of the heterotrophic uptake and respiration of glucose and amino acids in the shallow sandpit lake of Créteil (Paris Suburb, France)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Biomass and activity of planktonic bacteria were investigated during a one year study in a shallow sandpit lake. The shallowness of the lake helped keep the water column homogeneous regarding bacterioplankton. Small free-living bacteria (0.03 µm3 cell−1) dominated the populations throughout the period studied. Bacterial abundances varied from 1 to 11 × 106 cells ml−1. Kinetic parameters (V max, K + S and T) were determined with 14C labelled compounds (glucose and amino acids mixture). V max values were high and averaged 0.056 and 0.050 µgCl−1 h−1 for glucose and amino acids respectively. Maximal V max values were observed in summer at the highest temperatures, but also in early spring. T values were much greater in winter. K + S values were significantly higher for amino acids (3 µg Cl−1) than for glucose (1 µg Cl−1). A low percentage of mineralization (about 25% for both tracers) could be the expression of the high growth efficiency expected when bacteria are growing at the expense of low molecular weight compounds as phytoplankton exudates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albright, L. J., 1977. Heterotrophic dynamics in the lower Frase River, its estuary and Georgia Strait, British Columbia, Canada. Mar. Biol. 39: 203–211.

    Google Scholar 

  • Amblard, C., 1986. Les nucléotides adényliques: intérêts pour l'étude de la biomasse, de l'activité métabolique et de la structure des peuplements phytoplanctoniques lacustres. Thèse Doct. Etat, Univ. Clermont 2, Clermont-Ferrand: 1–37.

    Google Scholar 

  • Andersson, A., U. Larsson & A. Hagström, 1986. Size selective predation by a microflagellate on pelagic bacteria. Mar. Ecol. Prog. Ser. 33: 51–57.

    Google Scholar 

  • Azam, F., T. Fenchel, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Azam, F. & R. E. Hodson, 1981. Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria. Mar. Ecol. Prog. Ser. 6: 213–222.

    Google Scholar 

  • Bell, W. H. & E. Sakshaug, 1980. Bacterial utilization of algal extracellular products. 2. A kinetic study of natural populations. Limnol. Oceanogr. 25: 1021–1033.

    Google Scholar 

  • Billen, G., C. Joiris, J. Wijnant & G. Gillain, 1980. Concentration and microbiological utilization of small organic molecules in the Schelf Estuary, the Belgian coastal zone of the North Sea and the English Channel. Estuar. Coast. Shelf Sci. 17: 207–212.

    Google Scholar 

  • Bjørnsen, P. K., 1986. Bacterioplankton growth yield in continuous seawater cultures. Mar. Ecol. Prog. Ser. 30: 191–196.

    Google Scholar 

  • Cole, J. J. & G. E. Likens, 1979. Measurements of mineralization of phytoplankton detritus in an oligotrophic lake. Limnol. Oceanogr. 24: 541–547.

    Google Scholar 

  • Cole, J. J., G. E. Likens & D. L. Strayer, 1982. Photosynthetically produced dissolved organic carbon: an important carbon source for phytoplankton bacteria. Limnol. Oceanogr. 27: 1080–1090.

    Google Scholar 

  • Crawford, C. C., J. E. Hobbie & K. L. Webb, 1974. The utilization of free amino acids by estuarine microorganisms. Ecology 55: 551–563.

    Google Scholar 

  • Daley, R. J. & J. E. Hobbie, 1975. Direct counts of aquatic bacteria by a modified epifluorescence technique. Limnol. Oceanogr. 20: 875–882.

    Google Scholar 

  • Delattre, J. M., R. Delesmont, M. Clabaux, C. Oger & H. Leclerc, 1979. Bacterial biomass, production and heterotrophic activity of the coastal seawater at Gravelines (France). Oceanol. Acta 2: 317–324.

    Google Scholar 

  • Elliott, J. M., 1977. Some methods for statistical analysis of samples of benthic invertebrates. F.B.A. Sci. Publ. No. 25, 1–160.

  • Fenchel, T. M., 1982d. Ecology of heterotrophic microflagellates. 4. Quantitative occurence and importance as bacterial consumers. Mar. Biol Prog. Ser. 9: 35–42.

    Google Scholar 

  • Fenchel, T. M. & B. B. Jorgensen, 1977. Detritus food chains of aquatic ecosystems: the role of bacteria. In Advances in microbial ecology. Plenum Press, New York: 1–58.

    Google Scholar 

  • Fergusson, R. L. & W. G. Sunda, 1984. Utilization of amino acids by planktonic marine bacteria: Importance of clean technique and low substrate additions. Limnol. Oceanogr. 29: 258–274.

    Google Scholar 

  • Furhman, J. A., J. W. Ammerman & F. Azam, 1980. Bacterioplankton in the coastal euphotic zone: Distribution, activity and possible relationships with phytoplankton. Mar. Biol. 50: 201–207.

    Google Scholar 

  • Fuhrman, J. A. & F. Azam, 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Envir. Microbial. 39: 1085–1095.

    Google Scholar 

  • Furhman, J. A. & F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results. Mar. Biol. 66: 109–120.

    Google Scholar 

  • Garnier, J., 1989. Peuplement phytoplanctonique et bactéries hétrotrophes d'un lac peu profond (Lac de Créteil; région parisienne). Production, fonctionnement, évolution. Thèse Doct. ès Sci. (Ecologie). Univ. Paris VI, 331 pp.

  • Garnier, J. & D. Benest, 1990. Seasonal coupling between phyto- and bacterioplankton in a sand pit lake (Créteil Lake, France). In: Bonin, D. J. & Golterman, H. L. (eds), Fluxes Between Trophic Levels and Through the Water-Sediment Interface. Kluwer Academic Publishers, Dordrecht: 71–77 (Reprinted from Hydrobiologia 207).

    Google Scholar 

  • Gocke, K.,1977. Comparison of methods for determining the turnover times of dissolved organic compounds. Mar. Biol. 42: 131–141.

    Google Scholar 

  • Goulder, R., 1986. Seasonal variation in the abundance and heterotrophic activity of suspended bacteria in two lowland rivers. Freshwat. Biol. 16: 21–37.

    Google Scholar 

  • Güde, H., 1988. Direct and indirect influence of crustacean zooplankton on bacterioplankton of Lake Constance. Hydrobiologia 159: 63–73.

    Google Scholar 

  • Güde, H., B. Haibel & H. Müller, 1985. Development of planktonic bacterial populations in a water column of Lake Constance (Bodensee-Obersee). Arch. Hydrobiol. 105:59–77.

    Google Scholar 

  • Hagström, A., U. Larson, P. Hörstedt & S. Normak, 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl. Envir. Microbiol. 37: 805–812.

    Google Scholar 

  • Hamilton, R. D. & J. E. Preslan, 1970. Observations on heterotrophic activity in the Eastern Tropical Pacific. Limnol. Oceanogr. 15: 395–401.

    Google Scholar 

  • Hobbie, J. E. & C. C. Crawford, 1969. Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters. Limnol. Oceanogr. 14: 528–532.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Japser,1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Envir. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Jones, J. G. & B. M. Simon, 1975. An investigation of errors in direct counts of aquatic bacteria by epifluorescence microscopy, with reference to a new method for dyeing membrane filters. J. Appl. Bact. 39: 317–329.

    Google Scholar 

  • Jørgensen, N. O. G. & M. Søndergaard, 1984. Are dissolved amino acids free? Microb. Ecol. 10: 301–316.

    Google Scholar 

  • King, G. M. & T. Berman, 1984. Potential effects of isotopic dilution on apparent respiration in 14C heterotrophy experiments. Mar. Ecol. Prog. Ser. 19: 175–180.

    Google Scholar 

  • Kirchman, D., 1983. The production of bacteria attached to particles suspended in a freshwater pond. Limnol. Oceanogr. 28: 858–872.

    Google Scholar 

  • Kirchman, D. & R. Mitchell, 1982. Contribution of particle bound bacteria to total microheterotrophic activity in five ponds and two marshes. Appl. Envir. Microbiol. 43: 200–209

    Google Scholar 

  • Krambeck, C., 1979. Applicability and limitations of Michaelis-Menten equation in microbial ecology. Arch. Hydrobiol. Beih. Ergeb. Limnol. 12: 64–76.

    Google Scholar 

  • Lacroix, G., Ph. Boët, J. Garnier, F. Lescher-Moutoué, R. Pourriot & P. Testard, 1989. Controlling factors of the planktonic community in the shallow Lake of Créteil. Int. Revue ges. Hydrobiol. 74: 353–370.

    Google Scholar 

  • Linley, E. A. S. & R. C. Newell, 1984. Estimates of bacterial growth yields based on plant detritus. Bull. Mar. Sci. 35: 409–425.

    Google Scholar 

  • Marvalin, O., 1988. Abondance, biomasse, activité et relations trophiques des communautés bactériennes hétérotrophes du lac d'Aydat (Puy de Dôme). Contribution à l'étude du fonctionnement des systèmes aquatiques. 1–157. These de Doctorat de l'Univ. Blaise Pascal Clermont II.

  • Marxen, J., 1981. Bacterial biomass and bacterial uptake of glucose in polluted and unpolluted groundwater of sandy and gravelly deposits. Verh. Int. Ver. Limnol. 21: 1371–1375.

    Google Scholar 

  • Newell, S. Y. & R. R. Christian, 1981. Frequency of dividing cells as an estimator of bacterial productivity. Appl. Envir. Microbiol. 42: 23–31.

    Google Scholar 

  • Novistky, J. A. & R. Y. Morita, 1976. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl. Envir. Microbiol. 32: 617–622.

    Google Scholar 

  • Novitsky, J. A. & R. Y. Morita, 1977. Survival of a psychrophilic marine vibrio under long term nutrient starvation. Appl. Envir. Microbiol. 33: 635–641.

    Google Scholar 

  • Overbeck, J., 1975. Distribution pattern of uptake kinetic responses in a stratified eutrophic lake (Plußsee ecosystem study 4). Verh. Int. Ver. Limnol. 19: 2600–2615.

    Google Scholar 

  • Overbeck, J., 1979. Studies on heterotrophic functions and glucose metabolism of microplankton in Plußsee. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13: 56–76.

    Google Scholar 

  • Parsons, T. R. & J. D. H. Strickland, 1962. On the production of particulate organic carbon by heterotrophic processes in sea water. Deep-Sea Res. 8: 211–222.

    Google Scholar 

  • Pedrós-Alió, C. & T. D. Brock, 1983. The importance of attachment to particles for planktonic bacteria. Arch. Hydrobiol. 98: 374–379.

    Google Scholar 

  • Rai, H. & G. Hill, 1982. Establishing the pattern of heterotrophic bacterial activity in three Central Amazonian lakes. Hydrobiologia 86: 121–126.

    Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. E. Beck, H. J. B. Birks, and E. F. Connor (eds), 1–384. Cambridge studies in Ecology.

  • Reynolds, C. S., S. W. Wiseman, B. M. Godfrey & C. Butterwick, 1983. Some effects of artificial mixing on the dynamics of phytoplankton population in large limnetic enclosures. J. Plankton Res. 5: 203–234.

    Google Scholar 

  • Riemann, B., 1983. Biomass and production of phyto- and bacterioplankton in eutrophic Lake Tystrup, Denmark. Freshwat. Biol. 13: 389–398.

    Google Scholar 

  • Riemann, B., J. Fuhrman & F. Azam, 1982a. Bacterial secondary production in freshwater measured by 3H-thymidine incorporation method. Microb. Ecol. 8: 101–114.

    Google Scholar 

  • Riemann, B., M. Søndergaard, H. H. Schierup, S. Bosselman, G. Christiensen, J. hansen & B. Nielsen, 1982b. Carbon metabolism during a spring Diatom bloom in the eutrophic Lake Mossø. Int. Revue Ges. Hydrobiol. 67: 145–185.

    Google Scholar 

  • Servais, P., 1988. Mesure de la production bacterienne par incorporation de thymidine tritiée. Revue Franç. Sci. Eau 1: 217–237.

    Google Scholar 

  • Schwaerter, S., M. Søndergaard, B. Riemann & L. M. Jensen, 1988. Respiration in eutrophic lakes: the contribution of bacterioplankton an bacterial growth yield. J. Plankton Res. 10: 515–531.

    Google Scholar 

  • Sieburth, J., 1979.Sea microbes. Oxford University Press, New York.

    Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.

    Google Scholar 

  • Sommer, U., 1981. The role of r- and κ-selection in the succession of phytoplankton in Lake Constance. Acta Oecol. 2: 327–342.

    Google Scholar 

  • Tamminen, T., 1982. Winter microbial activity in Lake Tuusulanjärvi. Hydrobiologia 86: 109–113.

    Google Scholar 

  • Testard, P., 1983. Le lac de Créteil (région parisienne): un lac de sablière peu profond. In LamotteM. et BourlièreF. (eds), Problèmes d'écologie, Ecosystèmes limniques, 1–54. Masson, Paris.

    Google Scholar 

  • Torrela, F. & R. Y. Morita, 1981. Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic activity. Appl. Envir. Microbiol. 41: 518–527.

    Google Scholar 

  • Trousselier, M., M. Albat, P. André & B. Baleux, 1985. Dénombrements directs des bactéries dans les milieux aquatiques par microscopie et épifluorescence: distribution et précision des mesures. Revue Franç. Sci. Eau 4: 35–49.

    Google Scholar 

  • Turpin, D. H. & P. J. Harrison, 1980. Cell size manipulation in natural marine planktonic, diatom communities. Can. J. aquat. Sci. 37: 1193–1195.

    Google Scholar 

  • Vaccaro, R. F. & H. W. Jannasch, 1967. Variations in uptake kinetics for glucose by natural populations in sea-water. Limnol. Oceanogr. 12: 540–542.

    Google Scholar 

  • Wetzel, R. G, 1975. Limnology. W.B. Saunders Compagny (ed.), 1–743.

  • Williams, P. J.Le B., 1973. The validity of the application of simple kinetic analysis to heterogeneous microbial populations. Limnol. Oceanogr. 18: 159–165.

    Google Scholar 

  • Williams, P. J.Le B., T. Berman & O. Holm-Hansen, 1976. Amino acid uptake and respiration by marine heterotrophs. Mar. Biol. 35: 41–47.

    Google Scholar 

  • Wright, R. T., 1978. Measurement and significance of specific activity in the heterotrophic bacteria of natural waters. Appl. Envir. Microbiol. 36: 297–305.

    Google Scholar 

  • Wright, R. T. & J. E. Hobbie, 1965. The uptake of organic solutes in lake water. Limnol. Oceanogr. 10: 22–28.

    Google Scholar 

  • Wright, R. T. & J. E. Hobbie, 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47: 447–453.

    Google Scholar 

  • Wright, R. T. & N. M. Shah, 1977. The trophic role of glycolic acid in coastal seawater. 2. Seasonal changes in concentration and heterotrophic use in Ipswich Bay, Massachussetts, USA. Mar. Biol. 43: 257–263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garnier, J., Benest, D. Planktonic bacterial biomass and seasonal pattern of the heterotrophic uptake and respiration of glucose and amino acids in the shallow sandpit lake of Créteil (Paris Suburb, France). Hydrobiologia 209, 191–202 (1991). https://doi.org/10.1007/BF00015342

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00015342

Key words

Navigation