Skip to main content
Log in

Metabolic changes associated with biofilm formation in an undisturbed Mediterranean stream

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Respiratory activity (ETS), ectoenzymatic activity (β-glucosidase and β-xylosidase) and photosynthetic 14C-bicarbonate incorporation in the biofilm were measured in a shaded stream during a colonization sequence (43 days) on artificial substrates (unglazed clay tiles) and compared with older (aged) tiles. In the first five days bacterial densities and ectoenzyme activities showed a sharp increase. After two weeks, algal density, chlorophyll and productivity increased moderately. Chlorophyll did not reach similar values to those of the aged biofilms until the last day of colonization. Photosynthetic activity seemed to be relevant to the heterotrophs metabolism during substrate colonization, as could be deduced from the significant correlation between β-glucosidase and 14C-bicarbonate incorporation, algal cell densities and chlorophyll. Respiratory activity (ETS) decreased in the older biofilms, accordingly to their higher algal and bacterial density. Younger biofilms (up to 8 days old) showed higher ETS activity per cell, indicating a fast response of microorganisms to substrate availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association (APHA), 1989. Standard Methods for the examination of water and wastewater, 17th edition. Washington, 1134 pp.

  • Blenkinsopp, S. A. & M. A. Lock, 1990. The measurement of electron transport system activity in river biofilms. Wat. Res. 24: 441–445.

    Article  Google Scholar 

  • Blenkinsopp, S. A. & M. A. Lock, 1992. Impact of storm-flow on electron transport system activity in river biofilms. Freshwat. Biol. 27: 397–404.

    Google Scholar 

  • Boston, H. L. & W. R. Hill, 1991. Photosynthesis-light relations of stream periphyton communities. Limnol. Oceanogr. 36: 644–656.

    Google Scholar 

  • Burkholder, J. M., R. G. Wetzel & K. L. Klomparens, 1990. Direct comparison of phosphate uptake by adnate and loosely attached microalgae within an intact biofilm matrix. Apl. envir. Microbiol. 56: 2882–2890.

    Google Scholar 

  • Chróst, R. J., 1989. Characterization and significance of β-glucosidase activity in lake water. Limnol. Oceanogr. 34: 660–672.

    Google Scholar 

  • Freeman, C. & M. A. Lock, 1995. The biofilm polysaccharide matrix: A buffer against changing organic substrate supply? Limnol. Oceanogr. 40: 273–278.

    Google Scholar 

  • Freeman, C., P. J. Chapman, K. Gilman, M. A. Lock, B. Reynolds & H. S. Wheater, 1995. Ion exchange mechanisms and the entrapment of nutrients by river biofilms. Hydrobiologia 297: 61–65.

    Google Scholar 

  • Geesey, G. G., R. Mutch, J. W. Costerton & R. B. Green. 1978, Sessile bacteria: an important component of the microbial population in small mountain streams. Limnol. Oceanogr. 23: 1214–1223.

    Google Scholar 

  • Guasch, H. & S. Sabater, 1994. Primary production of epilithic communities in undisturbed Mediterranean streams. Verb. int. Ver. Limnol. 25: 1761–1764.

    Google Scholar 

  • Guasch, H. & S. Sabater, 1995. Seasonal variations in photosynthesis-irradiance responses by biofilms in Mediterranean streams. J. Phycol. 31: 727–735.

    Article  Google Scholar 

  • Guasch, H., E. Marti & S. Sabater, 1995. Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshwat. Biol. 33: 373–383.

    Google Scholar 

  • Hill, W. R. & A. W. Knight, 1988. Nutrient and light limitation of algae in two northern California streams. J. Phycol. 24: 125–132.

    Google Scholar 

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, and c in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167: 191–194.

    Google Scholar 

  • Jones, S. E. & M. A. Lock, 1989. Hydrolytic extracellular enzyme activity in heterotrophic biofilms from two contrasting streams. Freshwat. Biol. 22: 289–296.

    Google Scholar 

  • Jones, S. E. & M. A. Lock, 1993. Seasonal determinations of extracellular hydrolytic activities in heterotrophic and mixed heterotrophic / autotrophic biofilms from two contrasting rivers. Hydrobiologia 257: 1–16.

    Google Scholar 

  • Kaplan, L. A. & T. L. Bott, 1982. Diel fluctuations of DOC generated by algae in a piedmont stream. Limnol. Oceanogr. 27: 1091–1100.

    Google Scholar 

  • Marti, E., 1995. Nutrient dynamics in two Mediterranean streams differing in watershed physiographic features. Ph. D. Thesis. University of Barcelona, 237 pp.

  • Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. C. Cushing & R. L. Vanotte, 1983. Interbiome comparison of stream ecosystem dynamics. Ecol. Monogr. 53: 1–25.

    Google Scholar 

  • Mulholland, P. J., A. D. Steinman, A. V. Palumbo & J. W. Elwood, 1991. Role of nutrient cycling and herbivory in regulating periphyton communities in laboratory streams. Ecology 72: 966–982.

    Google Scholar 

  • Münster, U. & R. J. Chróst. 1990. Origin, composition, and microbial utilization of dissolved organic matter In J. Overbeck & R. J. Chróst (eds), Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York: 8–46.

    Google Scholar 

  • Ramsing, N. B., M. Kühl & B. B. Jorgensen, 1993. Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Apl. envir. Microbiol. 59: 3840–3849.

    Google Scholar 

  • Rogers, H. J., 1961. The dissimilation of high molecular weight organic substances. In I. C. Gunsalus & R. Y. Stanier (eds), The bacteria. Academic Press: 261–318.

  • Sabater, F., H. Guasch, E. Marti, J. Armengol & S. Sabater, 1995. The Ter: a Mediterranean river casestudy in Spain In C. E. Cushing, K. W. Cummins & G. W. Minshall (eds), River ecosystems of the world. Elsevier: 419–438.

  • Sombille, M., 1984. Measurement and study of substrate specificity of exoglucosidase activity in eutrophic water. Apl. envir. Microbiol. 48: 1181–1185.

    Google Scholar 

  • Stevenson, R. J. & R. Glover, 1993. Effects of algal density and current on ion transport through periphyton communities. Limnol. Oceanogr. 38: 1276–1281.

    Google Scholar 

  • Stock, M. & A. K. Ward, 1989. Establishment of a bedrock epilithic community in a small stream: microbial (algal and bacterial) metabolism and physical structure. Can. J. Fish. Aquat. Sci. 46: 1874–1883.

    Google Scholar 

  • Van Gaans, P. F. M., 1989. WATEQX- A restructured, generalized and extended Fortran 77 computer code and database format for the WATEQ aqueous chemical model for element speciation and mineral saturation, for use on personal computers or mainframes. Comp. Geosc. 15: 843–887.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabater, S., Romaní, A.M. Metabolic changes associated with biofilm formation in an undisturbed Mediterranean stream. Hydrobiologia 335, 107–113 (1996). https://doi.org/10.1007/BF00015272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00015272

Key words

Navigation