Skip to main content
Log in

Physical map and gene organization of the mitochondrial genome from the unicellular green alga Platymonas (Tetraselmis) subcordiformis (Prasinophyceae)

  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

the entire mitochondrial genome (mt genome) of the unicellular green alga Platymonas subcordiformis (synonym Tetraselmis subcordiformis; Prasinophyceae) was cloned and a physical map for the four restriction enzymes Hind III, Eco RI, Bgl II and Xba I was constructed. The mt genome of P. subcordiformis is a 42.8 kb circular molecule, coding for at least 23 genes. Hybridization and sequence analysis revealed the presence of a ca. 1.5 kb inverted repeat on the mt genome of P. subcordiformis. Phylogenetic analyses based on sequences of several coxI genes were carried out. Our data indicate that mitochondria from P. subcordiformis and from land plants form a natural, monophyletic group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bibb MB, vanEtten RA, Wright CT, Walberg MW, Clayton DA: Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167–180 (1981).

    Google Scholar 

  2. Boyen C, Leblanc C, Kloareg B, Loiseaux-de Goër S: Physical map and gene organization of the mitochondrial genome of Chondrus crispus (Rhodophyta, Gigartinales). Plant Mol Biol 26: 691–697 (1994).

    Google Scholar 

  3. Boyen C, Leblanc C, Bonnard G, Grienenberger JM, Kloareg B: Nucleotide sequence of the cox3 gene from Chondrus crispus: evidence that UGA encodes tryptophan and evolutionary implications. Nucl Acids Res 22: 1400–1403 (1994).

    Google Scholar 

  4. Chapman RL, Buchheim MA: Green algae and the evolution of land plants: inferences from nuclear-encoded rRNA gene sequences. BioSystems 28: 127–137 (1992).

    Google Scholar 

  5. Clark-Walker GD: Evolution of mitochondrial genomes in fungi. In: Wolstenholme DR, Jeon KW (eds) Mitochondrial Genome, pp. 89–127. Academic Press, San Diego (1992).

    Google Scholar 

  6. Coleman AW, Goff LJ: DNA analysis of eukaryotic algal species. J Phycol 27: 463–473 (1991).

    Google Scholar 

  7. Devereux R, LoeblichIII AR, Fox GE: Higher plant origins and the phylogeny of green algae. J Mol Evol 31: 18–24 (1990).

    Google Scholar 

  8. Gray MW: The endosymbiont hypothesis revisited. In: Wolstenholme DR, Jeon KW (eds) Mitochondrial Genome, pp. 233–357. Academic Press, San Diego (1992).

    Google Scholar 

  9. Hanson MR, Folkerts O: Structure and function of the higher plant mitochondrial genome. In: Wolstenholme DR, Jeon KW (eds) Mitochondrial Genome, pp. 129–172. Academic Press, San Diego (1992).

    Google Scholar 

  10. Higgins DG, Beasby AJ, Fuchs R: Clustal V: improved software for multiple sequence alignment. CABIOS 8: 189–191 (1992).

    Google Scholar 

  11. Hintz WE, Mohan M, Anderson JB, Horgen PA: The mitochondrial DNAs of Agaricus: heterogeneity in A. bitorquis and homogeneity in A. brunnescens. Curr Genet 9: 127–132 (1985).

    Google Scholar 

  12. Lang BF, Ahne F, Bonen L: The mitochondrial genome of the fission yeast Schizosaccharomyces pombe: the cytochrome b gene has an intron closely related to the first two introns in the Saccharomyces cerevisiae coxI gene. J Mol Biol 184: 353–366 (1985).

    Google Scholar 

  13. Lonsdale DM, Hodge TP, Howe CJ, Stern DB: Maize mitochondrial DNA contains a sequence homologous to the ribulose-1,5-bisphosphate carboxylase large subunit gene of chloroplast DNA. Cell 34: 1007–1014 (1983).

    Google Scholar 

  14. Michaelis G, Vahrenholz C, Pratje E: Mitochondrial DNA of Chlamydomonas reinhardtii: the gene for apocytochrome b and the complete functional map of the 15.8 kb DNA. Mol Gen Genet 223: 211–216 (1990).

    Google Scholar 

  15. Nozato N, Oda K, Yamato K, Ohta E, Takemura M, Akashi K, Fukuzawa H, Ohyama K: Cotranscriptional expression of mitochondrial genes for subunits of NADH dehydrogenase, nad5, nad4, nad2, in Marchantia polymorpha. Mol Gen Genet 237: 343–350 (1993).

    Google Scholar 

  16. Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K: Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. J Mol Biol 223: 1–7 (1992).

    Google Scholar 

  17. Palmer JD: Comparison of chloroplast and mitochondrial genome evolution in plants. In: Hermann RG (eds) Cell Organelles, pp. 99–133. Springer-Verlag, Wien/New York (1992).

    Google Scholar 

  18. Palmer JD, Shields CR: Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307: 437–440 (1984).

    Google Scholar 

  19. Saitou N, Nei M: The neigbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 (1987).

    Google Scholar 

  20. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).

    Google Scholar 

  21. Schuster W, Brennicke A: Interorganeller sequence transfer: plant mirochondrial DNA is nuclear, is plastid, is mitochondrial. Plant Sci 54: 1–10 (1988).

    Google Scholar 

  22. Schuster W, Brennicke A: The plant mitochondrial genome: physical structure, information content, RNA editing, and gene migration to the nucleus. Annu Rev Plant Physiol Plant Mol Biol 45: 61–78 (1994).

    Google Scholar 

  23. Stern DB, Palmer JD: Tripartite mitochondrial genome of spinach: physical structure, mitochondrial gene mapping, and locations of transposed chloroplast DNA sequences. Nucl Acids Res 14: 5651–5666 (1986).

    Google Scholar 

  24. Stern DB, Lonsdale DM: Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299: 698–702 (1982).

    Google Scholar 

  25. Vahrenholz C, Pratje E, Michaelis G, Dujon B: Mitochondrial DNA of Chlamydomonas reinhardtii: sequence and arrangement of URF5 and the gene for cytochrome oxidase subunit I. Mol Gen Genet 201: 213–224 (1985).

    Google Scholar 

  26. van denHoek C, Jahns HM, Mann DG: Algen. Thieme Verlag, Stuttgart/New York (1993).

    Google Scholar 

  27. van dePeer Y, deWachter R: TREECON: a software package for the construction and drawing of evolutionary trees. Comput Applic Biosci 9: 177–182 (1993).

    Google Scholar 

  28. Ward BL, Anderson RS, Bendich AJ: The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25: 793–803 (1981).

    Google Scholar 

  29. Wolff G, Kück U: Organization and coding capacity of mitochondrial genomes of algae. In: Brennicke A, Kück U (eds) Plant Mitochondria, pp. 103–113. VCH Chemie, Weinheim (1993).

    Google Scholar 

  30. Wolff G, Plante I, Lang BF, Kück U, Burger G: Complete sequence of the mitochondrial DNA of the chlorophyte alga Prototheca wickerhamii. J Mol Biol 237: 75–86 (1994).

    Google Scholar 

  31. Wolstenholme DR: Animal mitochondrial DNA: structure and evolution. In: Wolstenholme DR, Jeon KW (eds) Mitochondrial Genome, pp. 173–216. Academic Press, San Diego (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, U., Zetsche, K. Physical map and gene organization of the mitochondrial genome from the unicellular green alga Platymonas (Tetraselmis) subcordiformis (Prasinophyceae) . Plant Mol Biol 29, 1081–1086 (1995). https://doi.org/10.1007/BF00014979

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014979

Key words

Navigation