Skip to main content
Log in

Genetically improved potatoes: protection from damage by Colorado potato beetles

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Russet Burbank potato plants have been genetically improved to resist insect attack and damage by Colorado potato beetles (Leptinotarsa decemlineata (Say)) by the insertion of a cryIIIA gene encoding the insect control protein of Bacillus thuringiensis var. tenebrionis. A modified gene that dramatically improved plant expression of this protein was utilized. Its expression in Russet Burbank potato plants resulted in protection from damage by all insect stages in the laboratory and in dramatic levels of protection at multiple field locations. Analysis of these genetically modified potatoes indicated that they conform to the standards for Russet Burbank potatoes in terms of agronomic and quality characteristics including taste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barton KA, Miller MJ: Production of Bacillus thuringiensis insecticidal protein in plants. In: Kung S, Wu R (eds) Transgenic Plants, vol. 1, Engineering and Utilization. pp. 297–315, Academic Press Inc, San Diego, CA (1993).

    Google Scholar 

  2. Barton KA, Whiteley HR, Yang N-S: Bacillus thuringiensis delta-endotoxin in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol 85: 1103–1109 (1987).

    Google Scholar 

  3. Bergers WW: A rapid quantitative assay for solanidine glycoalkaloids in potatoes and industrial potato protein. Potato Res 23: 105–110 (1980).

    Google Scholar 

  4. Dean C, Tamaki S, Dunsmuir P, Favreau M, Katayama C, Dooner H, Bedbrook J: mRNA transcripts of several plant genes are polyadenylated at multiple sites in vivo. Nucl Acids Res 14: 2229–2240 (1986).

    Google Scholar 

  5. Delannay X, LaValle BJ, Proksch RK, Fuchs RL, Sims SR, Greenplate JT, Marrone PG, Dodson RB, Augustine JJ, Layton JG, Fischhoff DA: Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Bio/technology 7: 1265–1269 (1989).

    Google Scholar 

  6. Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV: Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/technology: 11: 194–200 (1993).

    Google Scholar 

  7. Ferro DN, Lyon SM: Colorado Potato Beetle (Coleoptera: Chrysomelidae) larval mortality: operative effects of Bacillus thuringiensis subsp. san diego. J Econ Entomol 83: 1229 (1990).

    Google Scholar 

  8. Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Meyer EJ, Rochester DE, Rogers SG, Fraley RT: Insect tolerant transgenic tomato plants. Bio/technology 5: 807–813 (1987).

    Google Scholar 

  9. Forgash AJ: Insecticide resistance in the Colorado potato beetle. In: Ferro DN, Voss RH (eds) Proceedings of the Symposium on the Colorado Potato Beetle, 17th Congress of Entomology, pp. 33–52. Massachusetts Agricultural Experimental Station Research Bulletin 704 (1985).

  10. Fuchs RL, MacIntosh SC, Dean DA, Greenplate JT, Perlak FJ, Pershing JC, Marrone PG, Fischhoff DA: Quantitation of Bacillus thuringiensis insect control protein as expressed in transgenic plants. In: Hickle LA, Fitch WL (eds) Analytical Chemistry of Bacillus thuringiensis, pp. 105–123. American Chemical Society Symposium series 432. American Chemical Society, Washington, DC (1990).

    Google Scholar 

  11. Goodall GJ, Filipowicz W: The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58: 473–483 (1989).

    Google Scholar 

  12. Herrnstadt C, Giroy TE, Sobieski DA, Bennett BD, Gartner FH: Nucleotide sequence and deduced amino acid sequence of a coleopteran-active delta-endotoxin gene from Bacillus thuringiensis subsp. san diego. Gene 57: 37–46 (1987).

    Google Scholar 

  13. Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB: Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/technology 6: 915–922 (1988).

    Google Scholar 

  14. Hofte H, Seurinck J, Van Houtven A, Vaeck M: Nucleotide sequence of a gene encoding an insecticidal protein B. thuringiensis var. tenebrionis toxic against coleoptera. Nucl Acids Res 15: 7183 (1987).

    Google Scholar 

  15. Kay R, Chan A, Daly M, McPherson J: Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236: 1299–1303 (1987).

    Google Scholar 

  16. Koncz C, Shell J: The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204: 383–396 (1986).

    Google Scholar 

  17. Kreig A, Huger AM, Langenbruch GA, Schnetter W: Bacillus thuringiensis var. tenebrionis; ein neuer gegenüber Larven von coleopteren wirksamer Pathotyp. Z Angew Entomol 96: 500–508 (1983).

    Google Scholar 

  18. Li J, Carroll J, Ellar DJ: Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353: 815–821 (1991).

    Google Scholar 

  19. McCown BH, McCabe DE, Russell DR, Robison DJ, Barton KA, Raffa KF: Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep 9: 590–594 (1991).

    Google Scholar 

  20. MacIntosh SC, McPherson SL, Perlak FJ, Marrone PG, Fuchs RL: Purification and characterization of Bacillus thuringiensis var tenebrionis insecticidal proteins produced in E. coli. Biochem Biophys Res Comm 170: 665–672 (1990).

    Google Scholar 

  21. McPherson SA, Perlak FJ, Fuchs RL, Marrone PG, Lavrik PB, Fischhoff DA: Characterization of the coleopteran specific protein gene of Bacillus thuringiensis var. tenebrionis. Bio/technology 6: 61–66 (1988).

    Google Scholar 

  22. Newell CA, Rozman R, Hinchee MA, Lawson EC, Haley L, Sanders P, Kaniewski W, Tumer NE, Horsch RB, Fraley RT: Agrobacterium-mediated transformation of Solanum tuberosum L. cv. Russet Burbank. Plant Cell Rep 10: 30–34 (1991).

    Google Scholar 

  23. Pavek JD, Corsini D, Nissley F: A rapid method for determining blackspot susceptibility of potato clones. Am Potato J 62: 511–517 (1985).

    Google Scholar 

  24. Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA: Insect resistant cotton plants. Bio/technology 8: 939–943 (1990).

    Google Scholar 

  25. Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA: Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88: 3324–3328 (1991).

    Google Scholar 

  26. Perlak FJ, McPherson SA, Fuchs RL, MacIntosh SC, Dean DA, Fischhoff DA: Expression of Bacillus thuringiensis protein in transgenic plants. In: Roberts DW, Granados RR, Proceedings of a Conference on Biotechnology, Biological Pesticides and Novel Plant-Pest Resistance for Insect Pest Management, pp. 77–81. Boyce Thompson Institute for Plant Research, Ithaca (1988).

    Google Scholar 

  27. Sekar V, Thompson DV, Maroey MJ, Bookland RG, Adang MJ: Molecular cloning and characterization of the insecticidal protein gene of Bacillus thuringiensis var. tenebrionis. Proc Natl Acad Sci USA 84: 7036–7040 (1987).

    Google Scholar 

  28. Shaw G, Kamen R: A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667 (1986).

    Google Scholar 

  29. Slaney AC, Robbins HL, English L: Mode of action of Bacillus thuringiensis toxin CryIIIA: An analysis of toxicity in Leptinotarsa decemlineata (Say) and Diabrotica undecimpunctata howardi Barber. Insect Biochem Mol Biol 22: 9–18 (1992).

    Google Scholar 

  30. Sutton DW, Havstad PK, Kemp JD: Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants. Transgenic Res 1: 228–236 (1992).

    Google Scholar 

  31. Vaeck M, Reynaerts A, Hofte H, Jansens S, DeBeuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J: Transgenic plants protected from insect attack. Nature 328: 33–37 (1987).

    Google Scholar 

  32. Wilson FD, Flint HM, Deaton WR, Fischhoff DA, Perlak FJ, Armstrong TA, Fuchs RL, Berberich SA, Parks NJ, Stapp BR: Resistance of cotton lines containing a Bacillus thuringiensis toxin to Pink Bollworm (Lepidoptera: Gelechiidae) and other insects. J Econ Entomol 85: 1516–1521 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perlak, F.J., Stone, T.B., Muskopf, Y.M. et al. Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22, 313–321 (1993). https://doi.org/10.1007/BF00014938

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014938

Key words

Navigation