Skip to main content
Log in

The exact calculation of stress intensity factors in transformation toughened ceramics by means of integral equations

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The stress induced transformation toughening is described by means of a quantitative model. A Griffith crack in an infinite plate under uniform tension interacts with a transformed circular ZrO2 particle. The crack is stabilized by the volume expansion of the ZrO2 inclusion which accompanies the phase transition: An overlying inclusion compresses the flanks of the crack, whereas a particle in front of the crack opens them so that the crack will be attracted and finally absorbed! The stress intensity factors corresponding to these situations are calculated numerically using the technique of singular integral equations.

Résumé

On décrit le durcissement par transformation sous contrainte au moyen d'un modèle quantitatif. Une fissure de Griffith dans une plaque infinie sous tension uniforme est en interaction avec une particule circulaire de ZrO2 transformée. La fissure est stabilisée par l'extension du volume de l'inclusion de ZrO2 qui accompagne le changement de phase. Une inclusion décalée comprime les flancs de las fissure tandis qu'une particule en front de fissure les ouvre de telle manière que la fissure sera attirée et finalement absorbée. On calcule, par voie numérique, les facteurs d'intensité de contrainte correspondant à ces situations, en utilisant la technique des équations intégrales singulières.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. N. Claussen, in Ceramics in Advanced Energy Techniques, Petten (1982).

  2. 2. N. Claussen and M. Rühle, in Proceedings, Science of Zirconia I, Heuer (ed.), Columbus, Ohio (1980).

  3. Lishing-Li and R.F. Pabst, in Proceedings, Fracture Mechanics of Ceramics 6, Bradt (ed.), Plenum Press, New York, London (1983).

    Google Scholar 

  4. R. Stevens, An Introduction to Zirconia, Magnesium Electron Publications, 113, Stoke on Trent (1983).

    Google Scholar 

  5. 5. H. Heuer and M. Rühle, in Proceedings, Science of Zirconia II, Claussen et al. (ed.), Columbus, Ohio (1984).

  6. N. Claussen, Zeitschrift für Werkstofftechnik 13 (1982) 138–147, 185–195.

    Google Scholar 

  7. W.H. Müller, Fortschrittsberichte DKG 1 (1985) 87–93.

    Google Scholar 

  8. W.H. Müller, Journal de Physique 47 (1986) C1.607–C1.611.

    Google Scholar 

  9. W.H. Müller, Fracture Control of Engineering Structures III (1986) 2129–2145.

    Google Scholar 

  10. M. Isida, in Method of Analysis and Solution of Crack Problems, Sih (ed.), Noordhoff International Publishing, Leyden (1973).

    Google Scholar 

  11. 11. F. Erdogan, G.D. Gupta and M. Ratwani, Journal of Applied Mechanics (1974) 1004–1013.

  12. F.Erdogan and G.D. Gupta, International Journal of Fracture 11 (1975) 13–27.

    Google Scholar 

  13. F. Erdogan, G.D. Gupta and T.S.Cook, in Methods of Analysis and Solutions of Crack Problems, Sih (ed.), Noordhoff. International Publishing, Leyden (1973).

    Google Scholar 

  14. F. Erdogan and V. Biricikoglu, International Journal of Engineering Science 10 (1973) 745–766.

    Google Scholar 

  15. S. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, Tokyo, 2nd edn. (1951.

    Google Scholar 

  16. 16. R.C. Garvie, in High Temperature Oxides, Alper (ed.), Academic Press (1970).

  17. 17. W. Vogel, MPI für Metallforschung, Stuttgart, private communication.

  18. 18. S. Schmauder, MPI für Metallforschung, Stuttgart, private communication.

  19. E.D. Whitney, Journal of the American Ceramic Society 45 (1962) 612–613.

    Google Scholar 

  20. H.P. Rossmanith, Grundlagen der Bruchmechanik, Springer Verlag, Wien, New York (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, W. The exact calculation of stress intensity factors in transformation toughened ceramics by means of integral equations. Int J Fract 41, 1–22 (1989). https://doi.org/10.1007/BF00014834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014834

Keywords

Navigation