Skip to main content
Log in

Bacterioplankton interactions with Daphnia and algae in experimental enclosures

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Development of bacterioplankton was studied by manipulation of planktivorous fish and/or nutrients in experimental enclosures in a fish pond. Grazing pressure exerted by large zooplankton (Daphnia galeata and Daphnia pulicaria) strongly influenced the counts and size distribution of bacterial populations. Morphometric analyses by scanning electron microscope revealed a shift in size distribution from larger mainly rod-type bacteria under low grazing pressure towards smaller mainly coccus-type under strong grazing pressure. The metabolic activity of bacteria measured as glucose uptake was higher under strong grazing pressure. After removal of large daphnids, the increase in bacterial density was probably the result of two additive factors: low grazing pressure and high level of dissolved organic matter (DOM) due to photosynthetic activity of more abundant algae. Composition of bacterial populations shifted toward larger, rod-type bacteria, and their metabolic efficiency measured by uptake, was lowered. The basic dimensionality of the system and interactions between variables was describe by R-mode factor analysis. The manipulated enclosures were relate with factor score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afifi, A. A. & S. P. Azen, 1979. Statistical analysis a computer oriented approach. Academic Press, New York-San Francisco-London.

    Google Scholar 

  • Billen, G. & A. Fontigny, 1987. Dynamics of Phaeocystisdomineted spring bloom in Belgian coastal waters. 2. Bacterioplankton dynamics. Mar. Ecol. Prog. Ser. 37: 249–257.

    Google Scholar 

  • Brendelberger, H., 1985. Filter mesh-size and retention efficiency for small particles: comparative studies with cladocera. Arch. Hydrobiol. Ergebn. Limnol. 21: 135–146.

    Google Scholar 

  • Bytel, J., 1986. Zooplankton development under condition of low fish predation: Cladocera. Thesis. Faculty of Sciences, Charles University, Prague, 67 pp. (in Czech).

    Google Scholar 

  • DeMott, W. R., 1985. Relation between filter mesh-size feeding mode and capture efficiency for cladocera feeding on ultrafine particles. Arch. Hydrobiol. Ergebn. Limnol. 21: 125–134.

    Google Scholar 

  • Fott, J., L. Pechar & M. Pražáková, 1980. Fish as a factor controlling water quality in ponds. In J. Bariea & L. R. Mur (eds), Hypertrophic Ecosystems. Developments in Hydrobiology 2. Dr W. Junk Publishers, The Hague: 255–261.

    Google Scholar 

  • Garnier, J. & D. Benest, 1991. Planktonic bacterial biomass and seasonal pattern of the heterotrophic uptake and respiration of glucose and amino acids in the shallow sandpit lake Creteil (Paris Suburb, France). Hydrobiologia 209: 191–202.

    Google Scholar 

  • Geller, W. & H. Müller, 1981. The filtration apparatus of cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia (Berlin) 49: 316–321.

    Google Scholar 

  • Güde, H., 1979. Grazing by protozoa as selection factor for activated sludge bacteria. Microb. Ecol. 5: 225–237.

    Google Scholar 

  • Güde, H., 1986. Loss processes influencing growth of planktonic bacterial populations in Lake Constance. J. Plankton Res. 8: 795–810.

    Google Scholar 

  • Güde, H., 1988. Direct and indirect influences of crustacean zooplankton on bacterioplankton in Lake Constance. Hydrobiologia 159: 63–73.

    Google Scholar 

  • Hobbie, J. E. & B. T. Wright, 1965. Composition between planktonic bacteria and algae for organic solutes. Mem. 1st. ital. Idrobiol. 18 (suppl.): 175–185.

    Google Scholar 

  • Hrbáček, J. etal., 1985. Limnological Methods. Charles University, Prague, 208 pp. (in Czech).

    Google Scholar 

  • Jøreskog, K. G., J. E. Klovan & R. A. Reyment, 1976. Geological factor analysis. Elsevier, Amsterdam-Oxford-New York.

    Google Scholar 

  • Kankaala, P., 1988. The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshwat. Biol. 19: 285–296.

    Google Scholar 

  • Krambeck, C., H. J. Krambeck & J. Overbeck, 1981. Microcomputerassisted biomass determination of plankton bacteria on scanning electron micrographs. Appl. envir. Microbiol. 42: 142–149.

    Google Scholar 

  • Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnol. Oceanogr. 31: 478–490.

    Google Scholar 

  • Markošová, R., M. Benediktová & A. Volková, 1990. Time- and vertical distribution of bacterioplankton in a shallow eutrophic reservoir. Wat. Res. 24: 1057–1067.

    Article  Google Scholar 

  • McManus, G. B. & J. A. Fuhrman, 1986. Bacterivory in seawater studied with the use of inert fluorescent particles. Limnol. Oceanogr. 31: 420–426.

    Google Scholar 

  • Overbeck, J. & R. J. Chróst, 1990. Aquatic microbial ecology — biochemical and molecular approaches. Spring-Verlag, New York, 190 pp.

    Google Scholar 

  • Pace, M. L., K. G. Porter & Y. S. Feig, 1983. Species and age specific differences in bacterial utilization by two occuring cladocerans. Ecology 64: 1145–1156.

    Google Scholar 

  • Pace, M. L., 1988. Bacterial mortality and the fate of bacterial production. Hydrobiologia 159: 41–50.

    Google Scholar 

  • Pace, M. L., G. B. McManus & S. E. G. Findlay, 1990. Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol. Oceanogr. 35: 795–808.

    Google Scholar 

  • Pedrós-Alió, C. & T. D. Brock, 1983. The impact of zooplankton feeding on the epilimnetic bacteria of a eutrophic lake. Freshwat. Biol. 13: 227–239.

    Google Scholar 

  • Porter, K. G., 1988. Microbial interactions in lake food webs. In Carpenter, S. R. (ed.), Complex interactions in lake communities, Springer, New York: 209–227.

    Google Scholar 

  • Porter, K. G., E. B. Sherr, B. F. Sherr, M. L. Pace & R. W. Sanders, 1985. Protozoa in planktonic food webs. J. Protozool., 32: 409–415.

    Google Scholar 

  • Riemann, B., 1985. Potencial importance of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Appl. envir. Microbiol. 50: 187–193.

    Google Scholar 

  • Riemann, B. & S. Bosselmann, 1984. Daphnia grazing on natural populations of lake bacteria. Verh. int. Ver. Limnol., 22: 795–799.

    Google Scholar 

  • Riemann, B., N. O. G. Jørgensen, W. Lampert & J. A. Fuhrman, 1986. Zooplankton induced changes in dissolved free amino acids and in production rates of freshwater bacteria. Microb. Ecol. 12: 247–258.

    Google Scholar 

  • Riemann, B., H. M. Sorensen, P. K. Bjorsen, S. J. Horsted, L. M. Jensen, T. G. Nielsen & M. Søndergaard., 1990. Carbon budgets of the microbial food web in estuarine enclosures. Mar. Ecol. Prog. Ser. 65: 159–170.

    Google Scholar 

  • Simon, M., 1987. The contribution of small and large freeliving and attached bacteria to the organic matter metabolism of Lake Constance. Limnol. Oceanogr. 39: 591–607.

    Google Scholar 

  • Simon, M. & M. M. Tilzer, 1987. Bacterial responses to seasonal primary production and phytoplankton biomass in Lake Constance. J. Plankton Res. 9: 535–552.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Søndergaard, M., B. Riemann & N. O. G. Jörgensen, 1985. Extracellular organic carbon (EOC) released by phytoplankton and bacterial production. Oikos 45: 323–332.

    Google Scholar 

  • Stockner, J. G. & K. G. Porter, 1988. Microbial food webs in freshwater planktonic ecosystems, In S. R. Carpenter [ed.] Complex interactions in lake communities. Springer: 69–83.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markošová, R., Ježzek, J. Bacterioplankton interactions with Daphnia and algae in experimental enclosures. Hydrobiologia 264, 85–99 (1993). https://doi.org/10.1007/BF00014096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014096

Key words

Navigation