Skip to main content
Log in

Control mechanisms of arctic lake ecosystems: a limnocorral experiment

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To assess the potential impact of human exploitation on arctic lakes and to determine how these eco systems are regulated we initated a limnocorral experiment in Toolik Lake, Alaska, in the summer of 1983. The limnocorrals were 5 m in diameter and from 5–6 m in depth and were open to the sediments. In 1983 four limnocorrals were deployed in an isolated bay of Toolik Lake within a cross-classified treatment regime of high and low inorganic nitrogen and phosphorus additions and high and low free swimming fish additions. The objective of the nutrient addition was to stimulate phytoplankton growth and determine the extent to which increased plant production was passed through pelagic and benthic food chains. The objective of the fish addition was to determine the impact of fish predation on large-bodied zooplankton, especially the zooplanktivorous copepod Heterocope, then to study the effect of altered Heterocope densities on small-bodied zooplankton species population dynamics. In 1984 two more limnocorrals were deployed, one a low fish, 1 × nutrient addition treatment and the other a no fish, no nutrient treatment. The fish manipulation was changed to confining several fish in cages with the cages held in corrals for varying lengths of time.

The addition of inorganic nitrogen and phosphorus dramatically increased phytoplankton productivity. This increase in algal biomass and production greatly altered the light environment and water quality in the nutrient treated limnocorrals. The secchi disk depth in the nutrient treated limnocorrals declined each summer reaching as low as 1 m in 1985. Both oxygen content and pH increased in the nutrient treatment corrals. Corrals not receiving nutrient additions remained near lake concentrations for most water quality parameters. While phytoplankton biomass was stimulated in 1983 phytoplankton growth was not sufficient to draw down all the nitrogen and phosphorus added and these nutrients reached high levels in the last half of the summer. In 1984 phosphorus remained above 20 µg in the nutrient-treated corrals but ammonia dropped to reference levels by day 25. In 1985 both nutrient concentrations rapidly declined to reference levels.

Most pelagic components responded to the nutrient additions. Microbial production was stimulated in the nutrient treated limnocorrals and bacterial population sizes built up to nearly 8–10 times those of the reference corrals. However, microheterotrophs soon increased in abundance and apparently grazed down bacteria to reference levels. Phytoplankton population density, as estimated by chlorophyll a determinations, increased dramatically with nutrient addition such that each year the phytoplankton densities were higher than before. Primary productivity was also stimulated and appeared not to be light limited even when phytoplankton densities rose to high levels. In the first two years of the experiment zooplankton densities were little altered by the increased phytoplankton densities. However, by 1985 daphnid densities were quite a bit higher in the high nutrient addition limnocorrals.

The benthic community and sediment response was much less affected by nutrient addition. Overall sediment respiration increased in the nutrient treated corrals but underlying sediments seemed little affected. Decomposition of Carex litter was likewise little affected by nutrient addition. Benthic invertebrates were also little impacted by the nutrient addition and increased sedimentation of phytoplankton. However, the response of benthic invertebrates is difficult to assess fully in the current experiment because chironomids, a prominent component of the benthic community, failed to recruit into the limnocorrals and the corrals physically shifted during ice-out in the spring of 1984 disturbing the sediment in several corrals.

The fish additions in 1983 of free swimming grayling essentially eliminated large bodied zooplankton, especially Heterocope septentrionalis, from all four limnocorrals. In subsequent summers Heterocope were not so dramatically preyed upon but generally were found in higher densities in the low or no fish treatments. However, either when Heterocope were eliminated in 1983 or were in rough inverse proportion to fish density, altered Heterocope abundance had no obvious affect on small-bodied zooplankton abundance. The fish treatment apparently influenced the zooplankton response to high nutrient addition in 1985. In the high nutrient limnocorrals daphnid populations became very abundant, but in the high fish treatment the daphnid responding was the small-bodied D. longiremis while in the low fish treatment the daphnid responding was the large-bodied D. middendorffiana.

Thus we have considerable evidence for bottom up control of phytoplankton density and production. This increased production ultimately, but not for two years, stimulated zooplankton density increases. Increased nutrients had little effect on the benthos or sediments. Fish manipulations influenced large-bodied zooplankton but had little effect on small-bodied zooplankton. Because grayling are predominantly plankton feeders in lakes, no fish effect on benthic invertebrates was expected.

Limnocorrals thus seem good systems to study nutrient-phytoplankton interactions. They are not as suitable for benthic invertebrate studies and fish manipulations may be difficult. Most other limnocorral studies were of brief duration; however, in the present study the limnocorrals seemed to perform well over a three year period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagaard, K., 1978. The chironomids of Lake Malsjoen. A phenological, diversity, and production study. Norw. J. Ent. 25: 21–37.

    Google Scholar 

  • Ahl, T., 1975. Effects of man-induced and natural loading of phosphorus and nitrogen on the large Swedish lakes. Verh. int. Ver. Limnol. 19: 1125–1132.

    Google Scholar 

  • Anderson, R. 0., 1959. A modified flotation technique for sorting bottom fauna samples. Limnol. Oceanogr. 4: 223–225.

    Google Scholar 

  • Anderson P. & T. Fenchel, 1985. Bacterivory by microheterotrophic flagellates in seawater samples. Limnol. Oceanogr. 30: 198–202.

    Google Scholar 

  • Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.

    CAS  Google Scholar 

  • Ball, R. C. & I. D. W. Hayne, 1952. Effects of the removal of the fish populations on the fish-food organisms of a lake. Ecology 33: 41–48.

    Google Scholar 

  • Benndorf, J., H. Kneschke, K. Kossatz & E. Penz, 1984. Manipulation of the pelagic food web by stocking with predacious fishes. Int. Revue ges. Hydrobiol. 69: 407–428.

    Google Scholar 

  • Bligh, E. G. & W. J. Dyer, 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    PubMed  CAS  Google Scholar 

  • Bloesch, J., P. Bossard, H. Bührer, H. R. Bührer & Uehlinger, 1988. Can results from limnocorral experiments be transferred to in situ conditions? (Biomanipulation in limnocorrals V1) Verh. int. ver. Limnol. 23: 762–763.

    Google Scholar 

  • Borsheim, Y., J. I. Koksvik, A. Langeland, B. Ness, Y. Olsen & H. Reinertsen, 1982. Karbon-og fosforbudsjett for planktonsamfunn i plastinnhegninger, med spesiell vekt pa bakterienes utvikling og betydning som fode for zooplanktonet. Norges Teknisk— Naturvitenskaplige Forskningsrad. Utvalg for eutrofieringsforskning. Intern Rapp. 14/82: 1–46.

    Google Scholar 

  • Brooks, J. L. & S. J. Dodson, 1965. Predation, body size, and the composition of the plankton. Science 150: 28–35.

    Google Scholar 

  • Brown, K. M., 1982. Resource overlap and competition in pond snails: An experimental analysis. Ecology 64: 412–422.

    Google Scholar 

  • Brown, K. M. & D. R. DeVries, 1985. Predation and the distribution of a pulmonate pond snail. Oecologia 66: 93–99.

    Google Scholar 

  • Caron, D. A, 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures Appl. Envir. Microbiol. 46: 491–498.

    Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell, 1984. Plankton community structure and limnetic primary production. Am. Nat. 124: 159–172.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. von Ende, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    Google Scholar 

  • Chanton, J. P., C. S. Martens & G. W. Kipphut, 1983. Lead-210 geochronology in a changing environment. Geochim. Cosmochim. Acta 47: 1791–1804.

    CAS  Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.

    Google Scholar 

  • Cuker, B. E., 1981. Control of epilithic community structure in an arctic lake by vertebrate predation and invertebrate grazing. Ph.D. thesis, North Carolina State University, Raleigh, 96 p.

    Google Scholar 

  • Cuker, B. E., 1983. Competition and coexistence between the grazing snail Lymnea, Chironomidae, and Microcrustacea in an Arctic epilithic lacustrine community. Ecology 64: 10–15.

    Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767–773.

    CAS  Google Scholar 

  • Dodson, S. I., 1974. Zooplankton competition and predation: An experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.

    Google Scholar 

  • Dodson, S. I., 1979. Body size patterns in arctic and temperate zooplankton. Limnol. Oceanogr. 24: 940–949.

    Google Scholar 

  • Dodson, S. I., 1984. Predation of Heterocope septentrionalis on two species of Daphnia: Morphological defenses and their cost. Ecology 65: 1249–1257.

    Google Scholar 

  • Drenner, R. W., S. T. Threlkeld, J. D. Smith, J. R. Mummert & P. A. Cantrel, 1989. Interdependence of phosphorus, fish, and site effects on phytoplankton biomass and zooplankton. Limnol. Oceanogr. 34: 1315–1321.

    CAS  Google Scholar 

  • Eisenberg, R. M., 1966. The role of food in the regulation of the pond snail, Limnaea elodes. Ecology 47: 889–906.

    Google Scholar 

  • Evans, B. I., 1986. Strategies and tactics of search behavior in salmonid and centrarchid planktivorous fish. Ph.D. Thesis. University of Kansas. 83 pp.

  • Federle, T. W. & J. R. Vestal, 1980. Lignocellulose mineralization by arctic lake sediments in response to nutrient manipulation. Appl. Envir. Microbiol. 40: 32–37.

    CAS  Google Scholar 

  • Federle, T. W. & J. R. Vestal, 1982. Evidence of microbial succession on decaying leaf litter in an arctic lake. Can. J. Microbiol. 28: 686–695.

    CAS  Google Scholar 

  • Federle, T. W., V. L. McKinley & J. R. Vestal, 1982. Effects of nutrient enrichment on the colonization and decomposition of plant detritus by the microbiota of an arctic lake. Can. J. Microbiol 28: 1199–1205.

    CAS  Google Scholar 

  • Fogged, N., 1981. Diatoms of Alaska. Bibliotheca Phycologica 53: 1–317. J. Cramer, Germany.

    Google Scholar 

  • Fuhrman, J. A. & F. Azam, 1982. Thymidine incorporation as a means of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109–120.

    Google Scholar 

  • Gilinsky, E., 1984. The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65: 455–468.

    Google Scholar 

  • Goldman, C. R., 1962. A method of studying nutrient limiting factors in situ in water columns isolated by polyethylene film. Limnol. Oceanogr. 7: 99–101.

    Google Scholar 

  • Grice, G. D., M. R. Reeve, P. Koeller & D. W. Menze, 1977. The use of large volume, transparent, enclosed sea-surface water columns in the study of stress on plankton ecosystems. Helgol. Wiss. Meeresunters. 30: 118–133.

    CAS  Google Scholar 

  • Grice, G. D. & M. R. Reeve (eds), 1982. Marine Mesocosms. Springer-Verlag, New York.

    Google Scholar 

  • Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control, and competition. Am. Nat. 94: 421–425.

    Google Scholar 

  • Hall, D. J., W. E. Cooper & E. E. Werne, 1970. An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol. Oceanogr. 15: 839–928.

    Google Scholar 

  • Hall, D. J., S. T. Threlkeld, C. W. Burns & P. H. Crowley, 1976. The size efficiency hypothesis and the size structure of zooplankton communities. Ann. Rev. Ecol. Syst. 7: 177–208.

    Google Scholar 

  • Hayne, D. W. & R. C. Ball, 1956. Benthic productivity as influenced by fish predation. Limnol. Oceanogr. 1: 162–175.

    Google Scholar 

  • Hershey, A. E., 1985a. Effects of predatory sculpin on the chironomid community in an arctic lake. Ecology 66: 1131–1138.

    Google Scholar 

  • Hershey, A. E., 1985b. Littoral chironomid communities in an arctic Alaskan lake. Holarctic Ecology 8: 39–48.

    Google Scholar 

  • Hershey, A. E., 1990. Snail populations in arctic lakes: competition mediated by predation. Oecologia 82: 26–32.

    Google Scholar 

  • Hershey, A. E. & M. E. McDonald, 1985. Diet and digestion rates of the slimy sculpin, Cottus cognatus, in an Alaskan arctic lake. Can. J. Fish. aquat. Sci. 42: 483–487.

    Google Scholar 

  • Hillbricht-Ilkowska, A. & T. Weglenska, 1970. Some relations between production and zooplankton structure of two lakes of a varying trophy. Pol. Arch. Hydrobiol. 17: 233–240.

    Google Scholar 

  • Hobbie, J. E. & J. J. Cole, 1984. Response of a detrital food web to eutrophication. Bull. mar. Sci. 35: 357–363.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nucleopore filters for counting bacteria by fluorescence microscopy. App. envir. Microbiol. 33: 1225–1228.

    CAS  Google Scholar 

  • Hobbie, J. E., T. L. Corliss & B. J. Peterson, 1983. Seasonal patterns of bacterial abundance in an arctic lake. Arct. Alp. Res. 15: 253–259.

    Google Scholar 

  • Holmgren, S. K., 1984. Experimental lake fertilization in the Kuokkel area, Northern Sweden. Phytoplankton biomass and algal composition in natural and fertilized subarctic lakes. Int. Revue ges. Hydrobiol. 69: 781–817.

    Google Scholar 

  • Hrbacek, J., 1962. Species composition and the amount of zooplankton in relation to the fish stock. Rozpr. Cesk. Akad. Ved. Rada Mat. Prin Ved. 72: 1–114.

    Google Scholar 

  • Hrbacek, J., B. Desortova & J. Popovsky, 1978. Influence of the fish stock on the phosphorus-chlorophyll ratio. Verb. int. Ver. Limnol. 20: 1624–1628.

    Google Scholar 

  • Huber-Pestilozzzi, G., 1961. Das Phytoplankton des Sussawassers: Chlorophyceae (Grunalgen) Ordnung: Volvocales. Die Binnengewasser 5. Stuttgart, Germany, 728 p + 158 Plates.

  • Huber-Pestilozzi, G., 1968. Das Pytoplankton des Susswassers: Cryptopyceae, Chloromonadophyceae, Dinophyceae. Die Binnengewasser 16(3) Auflage 2. Stuttgart, Germany. 322 p.

  • Huber-Pestilozzi, G., 1976. Das Phytoplankton des Susswassers: Chrysophyceen. Farblose Flagellaten, Heterokonten. Die Binnengewasser 16(2) Halfte 1. Stuttgart, Germany 365 p.

  • Huffaker, C. B., 1958. Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27: 343–383.

    Google Scholar 

  • Hullar, M. A. J., M. J. Coffman & J. R. Vestal, 1986. The effects of nutrient enrichment on the distribution of microbial heterotrophic activity in arctic lakes. Perspectives in Microbial Ecology, Proceedings of the 4th International Symposium of Microbial Ecology: 207–212.

  • Hurlbert, S. H., J. Zedler & D. Fairbanks, 1972. Ecosystem alteration by mosquito fish (Gambusia athinis). Science 175: 639–641.

    Google Scholar 

  • Hyatt, K. D. & J. G. Stockner, 1985. Responses of sockeye salmon (Oncorhynchus nerka) to fertilization of British Columbia coastal lakes. Can. J. Fish. aquat. Sci. 42: 320–331.

    Google Scholar 

  • Imboden, D. M., B. S. F. Eid, T. Joller, M. Schurter & J. Wetzel, 1979. MELIMEX, and Experimental Heavy Metal Pollution Study: Vertical Mixing in a Large Limno-Corral. Schweiz. Z. Hydrol. 41: 177–189.

    CAS  Google Scholar 

  • Jansson, M., 1978. Experimental lake fertilization in the Kuokkel area, northern Sweden: Budget calculations and the fate of nutrients. Verh. int. Ver. Limnol. 20: 857–862.

    Google Scholar 

  • Johnson, L., 1972. Kellery Lake: Characteristics of a culturally unstressed salmonid community. J. Fish Res. Bd Can. 29: 731–740.

    Google Scholar 

  • Jonasson, P. M., 1972. Ecology and production of the profundal benthos in relation to phytoplankton in Lake Esrom. Oikos Supplementum 14: 1–148.

    Google Scholar 

  • Kalff, J. & H. E. Welch, 1974. Phytoplankton production in Char Lake, a natural polar lake, and in Meretta Lake, a polluted polar lake, Corwallis Island, Northwest Territories. J. Fish. Res. Bd Can. 31: 621–636.

    Google Scholar 

  • Kalff, J., H. J. Kling, S. H. Holmgren & H. E. Welch, 1975. Phytoplankton, phytoplankton growth and biomass cycles in an unpolluted and in a polluted polar lake. Verh. int. Ver. Limnol. 19: 487–495.

    Google Scholar 

  • Kaushik, N. K., G. L. Stephenson, K. R. Solomon & K. E. Day, 1985. Impact of permethrin on zooplankton communities in limnocorrals. Can. J. Fish. aquat. Sci. 42: 77–85.

    CAS  Google Scholar 

  • Keller, S. A., R. H. Morris & D. L. Detterman, 1961. Geology of the Shaviovik and Sagavanirktok Rivers region, Alaska. U. S. Geol. Surv. Prof. Pap. 303D: 169–222.

    Google Scholar 

  • Kelso, J. R. M., 1985. Standing stock and production of fish in a cascading lake system in the Canadian Shield. Can. J. Fish. aquat. Sci. 42: 1315–1320.

    Google Scholar 

  • Kerfoot, W. C., 1977. Implications of copepod predation. Limnol. Oceanogr. 22: 316–325.

    Google Scholar 

  • Kipphut, G. W., 1984. Sediment-water chemical exchange in an arctic lake. EOS 65: 897.

    Google Scholar 

  • Kitchell, J. F. & S. R. Carpenter, 1987. Piscivores, planktivores, fossils, and phorbins. Pages 132–145. In W. C. Kerfoot & A. Sih, (eds) Predation: direct and indirect impacts on aquatic communities. University Press of New England, Hanover, New Hampshire, USA.

    Google Scholar 

  • Kring, R. L. & W. J. O'Brien, 1976. Accommodation of Daphnia pulex to altered pH conditions as measured by feeding rate. Limnol. Oceanogr. 21: 313–315.

    CAS  Google Scholar 

  • Lack, T. J. & W. G. Lund, 1974. Observations and experiments on the phytoplankton of Blelham Tarn, English Lake District. Freshwat. Biol. 4: 399–415.

    Google Scholar 

  • Leah, R. T., B. Moss & D. E. Forrest, 1978. Experiments with large enclosures in a fertile, shallow, back lake, Hickling Broad, Norfolk, United Kingdom. Int. Rev. Gesameter Hydrobiol. 63: 291–310.

    CAS  Google Scholar 

  • Lean, D. R. S., 1973. Phosphorus dynamics in lake water. Science 179: 678–680.

    CAS  Google Scholar 

  • Lean, D. R. S. & M. N. Charlton, 1976. A study of phosphorus kinetics in a lake ecosystem, in J. O. Nriagu (ed.), Environmental Biogeochemistry, Vol. 1, Carbon, Nitrogen, Phosphorus, Sulfurand Selenium Cycles. Ann Arbor Science Publ., Inc., Ann Arbor, Michigan: 283–294.

    Google Scholar 

  • LeBrasseur, R. J. & O. D. Kennedy, 1972. The fertilization of Great Central Lake II. Zooplankton standing stock. Fish. Bull. 70: 25–36.

    Google Scholar 

  • Liebig, T., 1874. Chemistry and its application to agriculture and physiology. Taylor and Walton, London.

    Google Scholar 

  • Losos, B. & J. Hetesa, 1973. The effect of mineral fertilization and carp fry on the composition and dynamics of plankton. Hydrobiol. Stud. 3: 173–217.

    Google Scholar 

  • Luecke, C., 1990. Changes in abundance and distribution of benthic macroinvertebrates after introduction of cutthroat trout into a previously fishless lake. Trans. am. Fish. Soc. 119: 1010–1021.

    Google Scholar 

  • Luecke, C. & W. J. O'Brien, 1983. The effects of Heterocope predation on zooplankton communities in arctic ponds. Limnol. Oceanogr. 28: 367–377.

    Google Scholar 

  • Lund, J. W. G., 1978. Experiments with lake phytoplankton in large enclosures. Rep. Freshwat. Biol. Ass. 46: 32–39.

    Google Scholar 

  • Lund, J. W. G. & C. S. Reynolds, 1982. The development and operation of large limnetic enclosures in Blelham Tarn, English Lake District, and their contribution to phytoplankton ecology. Progress in Phycological Res. 1: 1–65.

    CAS  Google Scholar 

  • Lundgren, A., 1985. Model ecosystems as a tool in freshwater and marine research. Arch. Hydrobiol. Suppl. 70: 157–196.

    Google Scholar 

  • Lunte, C. C. & C. Luecke, 1990. Trophic interactions of Leptodora in Lake Mendota. Limnol. Oceanogr. 35: 1091–1100.

    Google Scholar 

  • Lynch, M. & J. Shapiro, 1981. Predation, enrichment and phytoplankton community structure. Limnol. Oceanogr. 26: 86–102.

    Google Scholar 

  • Macan, T. T., 1966. Predation by Salmo trutta in a moorland fishpond. Verh. int. Ver. Limnol. 15: 1081–1087.

    Google Scholar 

  • Malley, D. F., P. S. S. Chang & D. W. Schindler, 1977. Decline of zooplankton populations following eutrophication of Lake 227, Experimental Lakes Area, Ontario: 1969–1974. Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, Manitoba.

    Google Scholar 

  • McDonald, M. E., B. E. Cuker & S. C. Mozley, 1982. Distribution, production, and age structure of slimy sculpin in an arctic lake. Envir. Biol. Fish. 7: 171–176.

    Google Scholar 

  • McDonald, M. E. & A. E. Hershey, 1989. Size structure of a lake trout (Salvelinus namaycush) population in an arctic lake: influence of angling and implication for fish community structure. Can. J. Fish. aquat. Sci. 46: 2153–2156.

    Google Scholar 

  • McKinley, V. L., T. W. Federle & J. R. Vestal, 1982. Effects of petroleum hydrocarbons on plant litter microbiota in an arctic lake. Appl. Envir. Microbiol. 43: 129–135.

    CAS  Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Google Scholar 

  • McQueen, D. J. & J. R. Post, 1988. Limnocorral studies of cascading trophic interactions. Verh. int. Ver. Limnol. 23: 739–747.

    Google Scholar 

  • Merrick, C. W., A. E. Hershey & M. E. McDonald, 1991. Lake Trout (Salvelinus namaycush) control of snail density and size distribution in an Arctic lake. Can. J. Fish. aquat. Sci. 48: 498–502.

    Google Scholar 

  • Miller, M., P. Spatt, P. Westlake, D. Yeakel & G. Hater, 1986. Primary production and its control in Toolik Lake. Arch. Hydrobiol 74: 97–131.

    Google Scholar 

  • Mills, K. H., 1985. Responses of lake whitefish (Coregonus clupeaformis) to fertilization of Lake 226, the Experimental Lakes area. Can. J. Fish. aquat. Sci. 42: 129–138.

    Google Scholar 

  • Moore, J. W., 1978. Some factors influencing the diversity and species composition of benthic invertebrates in twenty arctic and subarctic lakes. Int. Revue ges. Hydrobiol. 63: 757–771.

    Google Scholar 

  • National Academy of Science, 1969. Eutrophication: Causes, Consequences, Correctives. Washington, D.C., National Academy of Sciences. 661 pp.

    Google Scholar 

  • Neill, W. E. & A. Peacock, 1980. Breaking the bottleneck: Interactions of invertebrate predators and nutrients in oligotrophic lakes. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire: 715–724.

    Google Scholar 

  • Nelson, P. R. & W. T. Edmondson, 1955. Limnological effects of fertilizing Bare Lake, Alaska. U. S. Fish Wildl. Serv., Fish. Bull. 56: 414–436.

    Google Scholar 

  • Nilsson, N. A. & B. Pejler, 1973. On the relationship between fish fauna and zooplankton composition in north Swedish lakes. Rep. Instit. Freshwat Res. Drohninghom 53: 51–77.

    Google Scholar 

  • Nilsson, N. A., 1972. Effects of introductions of salmonids into barren lakes. J. Fish. Res. Bd Can. 29: 693–697.

    Google Scholar 

  • Northcote, T. G., 1988. Fish in the structure and function of freshwater ecosystems: A ‘topdown’ view. Can. J. Fish. aquat. Sci. 45: 361–379.

    Google Scholar 

  • O'Brien, W. J., 1975. Some aspects of the limnology of the ponds and lakes of the Noatak drainage basin, Alaska. Verh. int. Ver. Limnol. 19: 472–479.

    Google Scholar 

  • O'Brien, W. J. & F. deNoyelles, 1972. Photosynthetically elevated pH as a factor in zooplankton mortality in nutrient enriched ponds. Ecology 53: 605–614.

    Google Scholar 

  • O'Brien, W. J. & F. deNoyelles, Jr., 1974. Relationship between nutrient concentrations of phytoplankton density, and zooplankton density in nutrient enriched experimental ponds. Hydrobiologia 44: 105–125.

    Google Scholar 

  • O'Brien, W. J., C. Buchanan & J. F. Haney, 1979a. Arctic zooplankton community structure: Exceptions to some general rules. Arctic 32: 237–247.

    Google Scholar 

  • O'Brien, W. J., D. Kettle & H. P. Riessen, 1979b. Helmets and invisible armor: Structures reducing predation from tactile and visual planktivores. Ecology 60: 287–294.

    Google Scholar 

  • O'Brien, W. J. & C. Luecke, 1988. The coexistence of a predaceous copepod and a daphniid: Weeding and gardening in the Arctic. Verh. int. Ver. Limnol. 23: 2069–2074.

    Google Scholar 

  • Paine, R. T., 1966. Food web complexity and species diversity. Am. Nat. 100: 65–75.

    Google Scholar 

  • Parsons, T. R., 1982. The future of controlled ecosystem enclosure experiments. In Grice, D. G. & M. R. Reeve (eds). Marine mesocosms. Biological and chemical research in experimental ecosystems. Springer, New York: 411–418.

    Google Scholar 

  • Persson, G., S. K. Holkgren, M. Jansson, A. Lundgren, B. Nyman, D. Solander & C. Anell, 1975. Phosphorus and nitrogen and the regulation of lake ecosystems: Experimental approaches in subarctic Sweden. Section III. Freshwater Ecology, National Research Council, Canada.

    Google Scholar 

  • Pilson, M. E. Q. & S. W. Nixon, 1980. Marine Microcosms in Ecological Research, in J. P. Giesy, Jr. (ed.), Microcosms in Ecological Research, Technical Information Center, U.S. Department of Energy, Springfield, Virginia, 724–741.

    Google Scholar 

  • Porter, K., 1976. Enhancement of algal growth and productivity by grazing zooplankton. Science 192: 1332–1334.

    Google Scholar 

  • Porter, K. & Y. S. Feig, 1980. The use of DAPI for identifying and counting the aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Post, J. R. & D. J. McQueen, 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwat. Biol. 17: 79–89.

    Google Scholar 

  • Prescott, G. W., 1962. Algae of the Western Great Lakes. Wm. C. Brown, Co. Dubuque, Iowa. 977 p.

    Google Scholar 

  • Reinerten, H., A. Jensen, A. Langeland & Y. Olsen, 1986. Algal competition for phosphorus: The influence of zooplankton and fish. Can. J. Fish aquat. Sci. 43: 1135–1141.

    Google Scholar 

  • Rublee, P. A., 1992. Community structure and bottom-up regulation of heterotrophic microplankton in arctic LTER lakes. Hydrobiologia 240: 133–141.

    Google Scholar 

  • Rudd, J. W. M., M. A. Turner, B. E. Townsend, A. Swick & A. Furutani, 1980. Dynamics of selenium in mercury-contaminated experimental freshwater enclosures. Can. J. Fish. aquat. Sci. 37: 848–857.

    CAS  Google Scholar 

  • Sanders, F. S., 1985. Use of large enclosures for perturbation experiments in lentic ecosystems: A review. Envir. Monit. Assess. 5: 55–99.

    CAS  Google Scholar 

  • Schindler, D. W., 1974. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184: 897–899.

    CAS  Google Scholar 

  • Schindler, D. W., J. Kalff, H. E. Welch, G. J. Brunskill, H. Kling & N. Kritsch, 1974. Eutrophication in the high artic — Meretta Lake, Cornwallis Island (75'N lat.). J. Fish. Res. Bd Can. 31: 647–662.

    CAS  Google Scholar 

  • Schindler, D. W., H. E. Welch, J. Kalff, G. J. Brunskill N. Kritsch, 1974. Physical and chemical limnology of Char Lake, Cornwallis Island (75° N lat.). J. Fish. Res. Bd Can. 31: 585–607.

    CAS  Google Scholar 

  • Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation. Freshwat Biol. 14: 371–383.

    Google Scholar 

  • Shapiro, J., 1990. Biomanipulation: The next phase making it stable. Hydrobiologia 200/201: 13–27.

    Google Scholar 

  • Skuja, H. 1958. Taxonomie Des Phytoplanktons Einiger Seen In Uppland, Schweden. Symbolae Botanicae Upsasalienesis IX. Sweden.

  • Smith, M. W., 1969. Fertilization and predator control to increase growth rate and yield of trout in a natural lake. J. Fish. Res. Bd Can. 25: 2011–2036.

    Google Scholar 

  • Smith, S. H., 1972. Factors in ecological succession in oligotrophic fish communities of the Laurentian Great Lakes. J. Fish. Res. Bd Can. 29: 717–730.

    Google Scholar 

  • Smock, L. A., 1980. Relationships between body size and biomass of aquatic insects. Freshwat. Biol. 10: 375–383.

    Google Scholar 

  • Solarzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801.

    Google Scholar 

  • Solomon, K. R., K. E. Smith, G. Guest, J. Yoo & K. Kaushik, 1980. The use of limnocorrals in studying the effects of pesticides in aquatic ecosystems. Can. Tech. Rep. Fish. aquat. Sci. 975: 1–9.

    Google Scholar 

  • Solomon, K. R., K. E. Smith & G. L. Stephenson, 1982. Depth integrating samples for use in limnocorrals. Hydrobiologia 94: 71–75.

    Google Scholar 

  • Solomon, K. R., J. Y. Yoo, D. Lean, N. K. Kaushik, K. E. Day & G. L. Stephenson, 1985. Dissipation of permethrin in limnocorrals. Can. J. Fish. aquat. Sci. 42: 70–76.

    CAS  Google Scholar 

  • Stainton, M. P., M. J. Capel & F. A. J. Armstrong, 1977. The chemical analysis of freshwater, 2nd Edition. Can. J. Fish. mar. Serv. Misc. Spec. Publ. 25: 180 p.

  • Stein, R. A., J. F. Kitchell & B. Knezevic, 1975. Selective predation by carp (Cyprinus carpio L.) on benthic molluscs in Skadar Lake, Yugoslavia. J. Fish. Biol. 391–399.

  • Stein, R. A., C. G. Goodman & A. Marschall, 1984. Using time and energetic measures of cost in estimating prey value for fish predators. Ecology 65: 702–715.

    Google Scholar 

  • Stenson, J. A. E., T. Bohlin, L. Henrikson, B. I. Nilsson, H. G. Nyman, H. G. Oscarson & P. Larsson, 1978. Effects of fish removal from a small lake. Verh. int. Ver. Limnol. 20: 794–801.

    Google Scholar 

  • Stepanek, M. & M. D. Zelinka, 1961. Limnological study of the reservoir Sedlice near Zeliv. XVIII. The development of phytonanoplankton in silon bags. (In Czechoslovakian.) Sbornik Vys. Skoly Chem. Technol. Praze. Oddil Technol. vody (Sci. Pap. Inst. Chem. Technol. Prague, Water Technol.) 5: 275–323.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bull. 167 Fish. Res. Bd Can. Ottawa. 310 pp.

  • Takahashi, M. & F. A. Whitney, 1977. Temperature, salinity, and light penetration structures: controlled ecosystem pollution experiment. Bull. mar. Sci. 27: 8–16.

    Google Scholar 

  • Thienemann, A., 1928. Der sauerstoff im eutrophen und oligotrophen See. einbeitrag zur seetypenlehre. Die Binnengewasser 4: 175 pp.

    Google Scholar 

  • Thomas, E. A., 1958. Das plankton-test-lot, ein Gerät zum studium des verhaltens von planktonorganismen in sec. Monatsbull. Schweiz. ver, gas-u. Wasserfachm., Nr 1, 85.

  • Thomas, W. H. & D. L. R. Siebert, 1977. Effects of copper on the dominance and diversity of algae: Controlled ecosystem pollution experiment. Bull. Mar. Sci. 27: 23–33.

    CAS  Google Scholar 

  • Thorpe, J. H. & E. A. Bergey, 1981. Field experiments on responses of a freshwater benthic macroinvertebrate community to vertebrate predators. Ecology 62: 365–375.

    Google Scholar 

  • Threlkeld, S. T., 1987. Experimental evaluation of trophiccascade and nutrient mediated effects of planktivorous fish on plankton community structure. Pages 161–173. In W. C. Kerfoot & A. Sih, (ed), Predation: direct and indirect impacts on aquatic communities. University Press of New England, Hanover, New Hampshire, USA.

    Google Scholar 

  • Threlkeld, S. T., 1988. Planktivory and planktivore biomass effects on zooplankton, phytoplankton, and the trophic cascade. Limnol. Oceangr. 33: 1362–1375.

    Google Scholar 

  • Tippets, W. E. & P. B. Moyle, 1978. Epibenthic feeding by rainbow trout (Salmo gairdneri) in the McCould River, California. J. Ann. Ecol. 47: 549–559.

    Google Scholar 

  • Uelinger, U., 1982. Use of limnocorrals in a mesotrophic lake: Experiences and preliminary results. SIL in Trondheim, Norway.

    Google Scholar 

  • Uehlinger, U., P. Bossard, J. Bloesch, H. R. Bürgi & H. Bühre, 1984. Ecological experiments in limnocorrals: Methodological problems and quantification of the epilimnetic phosphorus and carbon cycles. Verh. int. Ver. Limnol. 22: 163–171.

    CAS  Google Scholar 

  • Vanni, M. J. & D. L. Findlay, 1990. Trophic cascades and phytoplankton community structure. Ecology 71: 924–937.

    Google Scholar 

  • Vermeij, G. J. & A. P. Covich, 1978. Coevolution of freshwater gastropods and their predators. Am. Nat. 112: 833–843.

    Google Scholar 

  • Ware, D. M, 1972. Predation by rainbow trout (Salmo gairdneri): the influence of hunger, prey density, and prey size. J. Fish. Res. Bd Can. 29: 1193–1201.

    Google Scholar 

  • Welch, H. E., J. A. Legault & H. J. Kling, 1989. Phytoplankton, nutrients, and primary production at Saquaqjuac, N. W. T. Can. J. Fish. aquat. Sci. 46: 90–107.

    Google Scholar 

  • Werner, E. E., J. F. Gilliam, D. J. Hall & G. G. Middlebach, 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 1540–1548.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1979. Limnological analyses. W. B. Saunders, Philadelphia, PA. 357 pp.

    Google Scholar 

  • Whalen, S. C. & J. C. Cornwell, 1985. Nitrogen, phosphorus, and organic carbon cycling in an arctic lake. Can. J. Fish. aquat. Sci. 42: 797–808.

    CAS  Google Scholar 

  • White, D. C., R. J. Bobbie, S. J. Morrison, D. K. Oosterhof, C. W. Taylor & D. A. Meete, 1977. Determination of microbial activity of estuarine detritus by relative rates of lipid biosynthesis. Limnol. Oceanogr. 22: 1089–1099.

    CAS  Google Scholar 

  • White, D. C., W. M. Davis, J. S. Nichels, J. D. King & R. J. Bobbie, 1979. Determination of the sedimentary microbial biomass by extractable lipidphosphate. Oecologia 40: 51–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Brien, W.J., Hershey, A.E., Hobbie, J.E. et al. Control mechanisms of arctic lake ecosystems: a limnocorral experiment. Hydrobiologia 240, 143–188 (1992). https://doi.org/10.1007/BF00013459

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00013459

Key words

Navigation