Skip to main content
Log in

Epilithic chlorophyll a, photosynthesis, and respiration in control and fertilized reaches of a tundra stream

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Photosynthesis and respiration by the epilithic community on cobble in an arctic tundra stream, were estimated from oxygen production and consumption in short-term (4–12 h), light and dark, chamber incubations. Chlorophyll a was estimated at the end of each incubation by quantitatively removing the epilithon from the cobble.

Fertilization of the river with phosphate alone moderately increased epilithic chlorophyll a, photosynthesis, and respiration. Fertilization with ammonium sulfate and phosphate, together, greatly increased each of these variables. Generally, under both control and fertilized conditions, epilithic chlorophyll a concentrations (mg m−2), photosynthesis, and respiration (mg O2 m−2, h−1) were higher in pools than in riffles. Under all conditions, the P/R ratio was consistent at ∼ 1.8 to 2.0. The vigor of epilithic algae in riffles, estimated from assimilation coefficients (mg O2 [mg Chl a]−1 h−1) was greater than the vigor of epilithic algae in pools. However, due to the greater accumulation of epilithic chlorophyll a in pools, total production (and respiration) in pools exceeded that in riffles. The epilithic community removed both ammonium and nitrate from water in chambers. Epilithic material, scoured by high discharge in response to storm events and suspended in the water column, removed ammonium and may have increased nitrate concentrations in bulk river water. However, these changes were small compared to the changes exerted by attached epilithon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA, 1985. Standard methods for the examination of water and wastewater, 16th edition. Greenberg, A. E., R. R. Trussell & L. S. Clesceri (Eds.). American Public Health Association, Washington.

    Google Scholar 

  • Bendschneider, K. & R. J. Robinson, 1952. A new spectrophotometric method for the determination on nitrite in sea water. J. mar. Res. 11: 87–96.

    CAS  Google Scholar 

  • Bott, T. L., J. R. Brock, C. E. Cushing, S. V. Gregory, D. King & R. C. Petersen, 1978. A comparison of methods for measuring primary productivity and community respiration in streams. Hydrobiologia 60: 3–12.

    Article  CAS  Google Scholar 

  • Craig, P. C. & P. J. McCart, 1975. Classification of stream types in Beauford Sea drainages between Prudhoe Bay, Alaska and the Mackenzie Delta, N.W.T., Canada. Arctic and Alpine Res. 7: 183–198.

    Article  CAS  Google Scholar 

  • Duff, J. H., K. C. Stanley & R. J. Avanzino, 1984. The use of photosynthesis-respiration chambers to measure nitrogen flux in epilithic algal communities. Verh. int. Ver. Limnol. 22:1436–1443.

    CAS  Google Scholar 

  • Elliot, R. J. & A. G. Porter, 1971. A rapid cadmium reduction method for the determination of nitrate in bacon and curing brines. Analyst 96: 522–527.

    Article  Google Scholar 

  • Grasshoff, K. & J. Johannsen, 1972. A new sensitive and direct method for the automatic determination of ammonia in seawater. J. Cons. int. Explor. Mer. 34: 516–521.

    CAS  Google Scholar 

  • Groeger, A. W. & B. L. Kimmel, 1989. Relationship between photosynthetic and respiratory carbon metabolism in freshwater phytoplankton. Hydrobiologia 173: 107–117.

    Article  CAS  Google Scholar 

  • Jones, M. N., 1984. Nitrate reduction by shaking with cadmium. Wat. Res. 18: 643–646.

    Article  CAS  Google Scholar 

  • King, D. K., 1982. Community metabolism and autotrophicheterotrophic relationships of woodland stream riffle sections. Ph.D. Thesis. Michigan State University, East Lansing. 356 pp.

    Google Scholar 

  • King, D. K. & K. W. Cummins, 1989a. Autotrophic-heterotrophic community metabolism relationships of a woodland stream. J. Freshwat. Ecol. 5: 205–218.

    CAS  Google Scholar 

  • King, D. K. & K. W. Cummins, 1989b. Factors affecting autotrophic-heterotrophic relationships of a woodland stream.J. Freshwat. Ecol. 5: 219–230.

    Google Scholar 

  • Lock, M. A., T. E. Ford, D. M. Fiebig, M. C. Miller, M. Hullar, J. R. Vestal, B. J. Peterson & J. E. Hobbie, 1989. A biogeochemical survey of rivers and streams in the mountains and foot-hills province of arctic Alaska. Arch. Hydrobiol. 115: 499–521.

    CAS  Google Scholar 

  • Lock, M. A., R. R. Wallace, J. W. Costerton, R. M. Ventullo & S. E. Charlton, 1984. River epilithon: toward a structuralfunctional model. Oikos 42: 10–22.

    Google Scholar 

  • MacKereth, F. J. H., J. Heron & T. F. Talberg, 1978. Nitrate. In: MacKereth, F. J. H., J. Heron & T. F. Talberg (Eds.), Water analysis: some revised methods for limnologists, Freshwater Biological Association, Windermere, U.K.: 72–73.

    Google Scholar 

  • Minshall, G. W., 1978. Autotrophy in stream ecosystems. BioScience 28: 767–771.

    Article  Google Scholar 

  • Murphy, M. L., 1984. Primary production and grazing in freshwater and intertidal reaches of a coastal stream, southeast Alaska. Limnol. Oceanogr. 29: 805–815.

    Google Scholar 

  • Naiman, R. J., 1983. The annual pattern and spatial distribution of aquatic oxygen metabolism in boreal forest watersheds. Ecol. Monogr. 53: 73–94.

    Article  Google Scholar 

  • Naiman, R. J. & J. R. Sedell, 1980. Relationships between metabolic parameters and stream order in Oregon. Can. J. Fish. aquat. Sci. 37: 834–847.

    Google Scholar 

  • Odum, H. T., 1956. Primary production in flowing rivers. Limnol. Oceanogr. 1: 102–117.

    Google Scholar 

  • Pennak, R. W. & J. W. Lavelle, 1979. In situ measurements of net primary production in a Colorado mountain stream. Hydrobiologia 66: 227–235.

    Article  CAS  Google Scholar 

  • Peterson, B. J., J. E. Hobbie & T. L. Corliss, 1983. A continuous flow periphyton bioassay: tests of nutrient limitation in a tundra stream. Limnol. Oceanogr. 28: 583–591.

    Article  CAS  Google Scholar 

  • Peterson, B. J., J. E. Hobbie & T. L. Corliss, 1986. Carbon flow in a tundra stream ecosystem. Can. J. Fish. aquat. Sci. 43: 1259–1270.

    Article  Google Scholar 

  • Peterson, B. J., J. E. Hobbie, A. E. Hershey, M. A. Lock, T. E. Ford, J. R. Vestal, V. L. McKinley, M. A. H. Hullar, M. C. Miller, R. M. Ventullo & G. S. Volk, 1985. Transformations of a tundra river from heterotrophy to autotrophy by addition of phosphorus. Science 229: 1383–1386.

    CAS  PubMed  Google Scholar 

  • Vannote, R. L., K. W. Cummins, G. W. Minshall, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Can. J. Fish. aquat. Sci. 37: 130–137.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowden, W.B., Peterson, B.J., Finlay, J.C. et al. Epilithic chlorophyll a, photosynthesis, and respiration in control and fertilized reaches of a tundra stream. Hydrobiologia 240, 121–131 (1992). https://doi.org/10.1007/BF00013457

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00013457

Key words

Navigation